Ideal gases Assumptions: 1.There are a huge number N of molecules, each of mass m, moving in random directions at various speeds. 2.On average, the molecules.

Slides:



Advertisements
Similar presentations
Ideal gas Assumptions Particles that form the gas have no volume and consist of single atoms. Intermolecular interactions are vanishingly small.
Advertisements

Ideal gas Assumptions 1.Particles that form the gas have no volume and consist of single atoms. 2.Intermolecular interactions are vanishingly small.
Gases Chapter 14.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Gases Chapter 5 Become familiar with the definition and measurement of gas pressure.
Chapter 10 Gases No…not that kind of gas. Kinetic Molecular Theory of Gases Kinetic Molecular Theory of Gases – Based on the assumption that gas molecules.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
4.3.4 Ideal Gases.
Gas Laws Quantitative Chemistry. Measurement of Molar Quantities 1 mole of a substance contains 6.02 x particles.
Chapter 14 The Ideal Gas Law and Kinetic Theory. To facilitate comparison of the mass of one atom with another, a mass scale know as the atomic mass scale.
Gases. Gases - Concepts to Master What unit of measurement is used for temperature when solving gas law problems? Why? Summarize the Kinetic Molecular.
Chapter 13: Gases. What Are Gases? Gases have mass Gases have mass.
Heat and Temperature Matter is made of Atoms Electron Microscope Photo of Germanium Atoms.
Gases Notes A. Physical Properties: 1.Gases have mass. The density is much smaller than solids or liquids, but they have mass. (A full balloon weighs.
Chapter 11 Gases The Gas Laws of Boyle, Charles and Avogadro
Gas Laws. Gas Pressure ____________ is defined as force per unit area. Gas particles exert pressure when they ____________ with the walls of their container.
Gases
Thermal Physics Topic 3.2 Modelling Gases Courtesy to Greengates school in mexico.
Gases Kinetic Theory of Ideal Gas, Gas Laws & Equation Combined Gas Laws, Numerical value of R.
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Ideal Gas Law PV=nRT Kinetic Molecular Theory 1. Gases have low density 2. Gases have elastic collisions 3. Gases have continuous random motion. 4. Gases.
Gases. Chemistry Review Atom – smallest piece of an element Molecule – smallest piece of a compound – two or more atoms chemically bonded Mole – counting.
GASES and the Kinetic Molecular Theory A.Gas particles DO NOT attract or repel each other B.Gas particles are much smaller than the distances between them.
Kinetic Theory and Gases. Objectives Use kinetic theory to understand the concepts of temperature and gas pressure. Be able to use and convert between.
Chapter 13: Gases. What Are Gases? Gases have mass Gases have mass Much less compared to liquids and solids Much less compared to liquids and solids.
Gases Dr. Chin Chu River Dell Regional High School
MOLAR VOLUME. molar volume What is the volume of a gas at STP, if it contains 10.4 moles? What is the volume of carbon dioxide gas (STP) if the.
Gas Laws Chapter 5. Gases assume the volume and shape of their containers. Gases are the most compressible state of matter. Gases will mix evenly and.
Chapter 11 Molecular Composition of Gases. Avogadro’s Law Equal Volumes of Gases at the Same Temperature & Pressure contain the Same Number of “Particles.”
Gas Laws. Elements that exist as gases at 25 0 C and 1 atmosphere.
GASES: GASES: General Concepts Sherrie Park Per. ¾ AP Chemistry.
Behavior of Gases  Gases behave much differently than liquids and solids and thus, have different laws.  Because gas molecules have no forces keeping.
The Gas Laws A Tutorial on the Behavior of Gases..
Gas Laws Ch. 14. Gases Kinetic Molecular Theory (KMT) says: –Gases have mass demo –Gases are easily compressed –Gases fill their container completely.
Gases. Gases - Concepts to Master What unit of measurement is used for temperature when solving gas law problems? Why? Summarize the Kinetic Molecular.
Gases Properties Kinetic Molecular Theory Variables The Atmosphere Gas Laws.
The Gas State  Gases are everywhere – atmosphere, environmental processes, industrial processes, bodily functions  Gases have unique properties from.
Chapter 09Slide 1 Gases: Their Properties & Behavior 9.
KINETIC MOLECULAR THEORY Kinetic Molecular Theory A theory that explains the physical properties of gases by describing the behavior of subatomic particles.
Gases Chapter 5. Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
Note: You must memorize STP and the gas laws!!. The Kinetic Molecular Theory states that gas particles are ____________ and are separated from one another.
Ideal vs. Real Gases No gas is ideal. As the temperature of a gas increases and the pressure on the gas decreases the gas acts more ideally.
7.2 More Mole Conversions!!!. - Molecular Oxygen = O 2 - Atomic Oxygen = O from the periodic table 7 elements that exist as diatomic molecules (MEMORIZE)
Gas Laws Chapter 10 CHEM140 February 2, Elements that exist as gases at 25 0 C and 1 atmosphere.
Kinetic Theory and Gases. Objectives Use kinetic theory to understand the concept of temperature. Be able to use and convert between the Celsius and Kelvin.
Ideal gases and molar volume
KINETIC MOLECULAR THEORY Physical Properties of Gases: Gases have mass Gases are easily compressed Gases completely fill their containers (expandability)
Kinetic Theory and Gases. Objectives Use kinetic theory to understand the concepts of temperature and gas pressure. Be able to use and convert between.
The Ideal Gas Law. Real Gas Behaviour There are several assumptions in the kinetic molecular theory that describe an ideal gas Gas molecules have zero.
Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
HEAT AND THERMAL ENERGY Kinetic Theory of Gases Thermal Expansion Gas Laws.
Gases. Ideal Gases Ideal gases are imaginary gases that perfectly fit all of the assumptions of the kinetic molecular theory.  Gases consist of tiny.
Some gas basics…. Describe the properties of gases? Describe the arrangement of particles in a gas? Describe the movement of particles in a gas? How does.
Gases & Kinetic Molecular Theory Kinetic molecular theory Gases Physical properties Temperature Pressure Boyles Law Charles Law Gay Lussacs Law Combined.
Chapter 13 Calculating Gases 1 Section 12.1 Pressure + Temperature conversions, Dalton’s + Graham’s Laws Section 13.1 The Gas Laws Section 13.2 The Ideal.
Chemistry – Chapter 14.  Kinetic Theory assumes the following concepts:  Gas particles don’t attract or repel each other  Gas particles are much smaller.
The Behavior of Gases Chapter 14. Chapter 14: Terms to Know Compressibility Boyle’s law Charles’s law Gay-Lussac’s law Combined gas law Ideal gas constant.
The Three Gas Laws pV = constant V/T = constant
3.2 Modeling a Gas. The Mole The mole is the amount of substance which contains the same number of elementary entities as there are in 12 grams of carbon-12.
Gas Laws Kinetic Theory assumptions Gas particles do not attract or repel Small particles in constant random motion Elastic collisions All gases have the.
V. Combined and Ideal Gas Law
Notes #7b Gases (Chapter 14).
Gases.
Chapter 13: Gases.
Properties Kinetic Molecular Theory Variables The Atmosphere Gas Laws
Chapter 5 The Gas Laws.
Presentation transcript:

Ideal gases Assumptions: 1.There are a huge number N of molecules, each of mass m, moving in random directions at various speeds. 2.On average, the molecules are large distances from each other. --> The average separation is much greater than the size 3.The molecules only interact when they collide. 4.Collisions with each other and the wall are perfectly elastic, like perfectly elastic pool balls.

These assumptions are usually valid when a gas is at: 1.low density; and 2.relatively higher temps (away from condensation point)

Monatomic vs. Diatomic Gases: Where are the monatomics?

Ideal gas law: PV = nRT (memorize) Usually, P = pressure in Pa = Nm -2 V = volume in m 3 n = the number of moles of gas R = the universal gas constant =8.31 J mol -1 K -1 (given) T = the absolute (kelvin) temperature Also useful to know: Standard temperature and pressure (STP): 1. T = 273 K = 0 0 C 2. Pressure = 1 atm = 1.01 x 10 5 N m -2 (Pa)

Review: What is a mole (mol)? 1 mol = the amount of substance that contains as many atoms or molecules as there are in g of carbon-12 1 mol = the number of grams of a substance numerically equal to the atomic (or molecular) mass --> The “grams per mol” is called its “molar mass” Ex 1. What is the mass in grams (g) of 1 mol of He gas? Ex 2. How many moles are in g of He gas?

Ex 3. What is the mass of 1 mole of O 2 gas? Ex 4. How many moles are in 12.8 g of oxygen gas?

Note: 1 mol contains Avagadro’s number N A of particles N A = 6.02 x particles per mole (given) = 6.02 x mol -1

Ex 5. How many atoms are in g of helium gas? Ex 6. How many molecules are in 12.8 g of oxygen gas?

Ex 7. What is the volume occupied by 5.60 g of nitrogen (molecular mass = 14.0) gas is at a temperature of C and a pressure of atm? T = _______ K; P = _________ Pa; n = _______moles Use: P V = n R T How many liters is this? (1000 L = 1 m 3 )

Ex. 8. A gas occupies a volume of 5.0 liters at a pressure of 2.0 atm. If the gas compressed to a volume of 3.0 liters at constant temperature, what is its new pressure (in atm)? Constant T: PV = nRT --> solve for T = PV/nR = constant before = after P 1 V 1 /nR= P 2 V 2 /nR P 1 V 1 = P 2 V 2 (n also constant)  With the equation in this form, any P and V units are OK as long as you are consistent. So substitute values in the last equation and solve for P 2 :

The previous example uses Boyle’s Law: PV = nRT = constant b/c T is constant This is like: xy = constant --> P and V are inversely proportional Graph: P V Explain Boyle’s law using particle collisions.

Ex. 9. Heat is added to a gas initially at a temp of 37 0 C and a pressure of 1.33 atm at constant volume. What will be the new pressure (in atm) if the temperature rises to 57 0 C? Constant V: PV = nRT Solve for: V = nRT/P = constant before = after nRT 1 /P 1 = nRT 2 /P 2 T 1 /P 1 = T 2 /P 2 (n is constant)  With the equation in this form, any P units are OK as long as you are consistent, but T must be in kelvins. Substitute in:

This is an example of Guy Lussac’s Law: PV = nRT --> V = nRT/P = constant --> T/P = constant --> T = constant x P --> T and P are directly proportional Graph: P T Explain Guy-Lussac’s law using particle collisions:

Ex. 10. A gas occupies a volume of 2.00 liters at a temp of of 25 0 C. What will be its new volume (in liters) when it is at a new temp of C at constant pressure? Constant P: PV = nRT --> solve for P = nRT/V = constant before = after nRT 1 /V 1 = nRT 2 /V 2 T 1 /V 1 = T 2 /V 2 (n constant) Make sure T is in kelvins, Then substitute values in:

This is an example of Charles’ Law: PV = nRT --> P = nRT/V = constant --> T/V = constant --> T = constant x V --> T and V are directly proportional Graph: V T Explain Charles’ law using particle collisions. Especially, how can pressure remain constant when T increases?