1 Solenoid-free Plasma Start-up In NSTX Using Transient Coaxial Helicity Injection Roger Raman, Univ. of Washington For the NSTX Team University of Maryland.

Slides:



Advertisements
Similar presentations
Potential Upgrades to the NBI System for NSTX-Upgrade SPG, TS NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U.
Advertisements

Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, M.G. Bell 2, T.R. Jarboe 1, B.A. Nelson 1, D.Mueller 2, R. Maqueda 3, R. Kaita 2,
NSTX-U T&T TSG Contributions to FY15 JRT NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U.
Summary of Presentations on Plasma Start-up and Progress on Small ST devices from STW2011 R. Raman University of Washington, Seattle, WA The Joint Meeting.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman Final XP Review June 5, 2009 NSTX Supported by.
Raman, APS051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
Coupling Solenoid-free Coaxial Helicity Injection Started Discharges to Induction in NSTX Office of Science R. Raman University of Washington For the NSTX.
NSTX Status and Plans College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York.
NSTX XP830 review – J.W. Berkery J.W. Berkery, S.A. Sabbagh, H. Reimerdes Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL.
NSTX Team Meeting May 28, 2008 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL.
Relay Feedback and X-point Height Control Egemen Kolemen S. Gerhardt and D. A. Gates 2010 Results Review Nov/30/2010 NSTX Supported by College W&M Colorado.
PCS Navigation D. Mueller January 26-28, 2010 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS.
Non-axisymmetric Control Coil Upgrade and related ideas NSTX Supported by V1.0 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U.
Current status of high k scattering system J. Kim 1, Y. Ren 2, K-C. Lee 3 and R. Kaita 2 1) POSTECH 2) PPPL 3) UC Davis NSTX Monday Physics Meeting LSB-318,
1 Update on Run Schedule R. Raman NSTX Team Meeting PPPL, Princeton, NJ, 08 February, 2006 Work supported by DOE contract numbers DE-FG02-99ER54519 AM08,
Demonstration of 200 kA CHI Startup Current Coupling to Transformer Drive on NSTX B.A. Nelson, R. Raman, T.R. Jarboe, University of Washington D. Mueller,
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew.
Radiative divertor with impurity seeding in NSTX V. A. Soukhanovskii (LLNL) Acknowledgements: NSTX Team NSTX Results Review Princeton, NJ Wednesday, 1.
NSTX Effects of NTSX Upgrades on DiagnosticsFebruary 8, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns.
Direct measurement of plasma response using Nyquist Contour Z.R. Wang 1, J.-K. Park 1, M. J. Lanctot 2, J. E. Menard 1,Y.Q. Liu 3, R. Nazikian 1 1 Princeton.
Solenoid-free Start-up and Ramp-up Progress and Plans for Office of Science R. Raman and D. Mueller For the NSTX Research Team NSTX 5 Year Plan.
NSTX-U Program Update J. Menard NSTX-U Team Meeting B318 May 7, 2013 NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto.
Second Switching Power Amplifier (SPA) Upgrade Physics Considerations Discussion S.A. Sabbagh 1, and the NSTX Research Team 1 Department of Applied Physics,
Absorber arc mitigation during CHI on NSTX D. Mueller, M.G. Bell, A.L. Roquemore, R. Raman, B.A. Nelson, T.R. Jarboe and the NSTX Research Team DPP09 Meeting.
CHI Run Summary for March 10-12, 31 & April 9, 2008 Flux savings from inductive drive of a Transient CHI started plasma (XP817) R. Raman, B.A. Nelson,
Summary of the SFPS XPs R. Raman, D. Mueller University of Washington Princeton Plasma Physics Laboratory and the NSTX Research Team FY09 NSTX Results.
XP817: Transient CHI – Solenoid free Plasma Startup and Coupling to Induction Office of Science R. Raman, B.A. Nelson, D. Mueller, T.R. Jarboe, M.G. Bell.
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
Xp705: Multimode ion transport: TAE avalanches E D Fredrickson, N A Crocker, N N Gorelenkov, W W Heidbrink, S Kubota, F M Levinton, H Yuh, R E Bell NSTX.
Development of Improved Vertical Position Control S.P. Gerhardt, E. Kolemen ASC Session, NSTX 2011/12 Research Forum Location Date NSTX Supported by College.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle NSTX Run Usage 27 February – 5 May, 2006 NSTX Mid-Run Assessment PPPL, Princeton,
NSTX Upgrade Project – Final Design Review June , NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
Energy Confinement Scaling in the Low Aspect Ratio National Spherical Torus Experiment (NSTX) S. M. Kaye, M.G. Bell, R.E. Bell, E.D. Fredrickson, B.P.
Some Halo Current Measurements in 2009 S.P. Gerhardt Thanks to: E. Fredrickson, H. Takahashi, L. Guttadora NSTX Results Review, 2009 NSTX Supported by.
NSTX Team Meeting February 7, 2007 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U.
Supported by Office of Science NSTX H. Yuh (Nova Photonics) and the NSTX Group, PPPL Presented by S. Kaye 4 th T&C ITPA Meeting Culham Lab, UK March.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman XP Review - ASC Feb 2, 2009 NSTX Supported by College.
Supported by Office of Science NSTX S.M. Kaye, PPPL For the NSTX Research Team ITPA T&C Mtg. Naka, Japan 31 March – 2 April 2009 The Effect of Rotation.
Solenoid Free Plasma Startup Progress and Plans R. Raman, D. Mueller S.C. Jardin (Theory) for the NSTX Research Team NSTX PAC-29 PPPL B318 January 26-28,
1 Plasma Start-up In NSTX Using Transient CHI R. Raman, T.R. Jarboe 1, D. Mueller 2, B.A. Nelson 1, M.G. Bell 2, M. Ono 2, T. Bigelow 3, R. Kaita 2, B.
NSTX Team Meeting December 21, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Enhancement of edge stability with lithium wall coatings in NSTX Rajesh Maingi, Oak Ridge National Lab R.E. Bell, B.P. LeBlanc, R. Kaita, H.W. Kugel, J.
1 Plasma Start-up In NSTX Using Transient CHI R. Raman, T.R. Jarboe 1, D. Mueller 2, B.A. Nelson 1, M.G. Bell 2, M. Ono 2, T. Bigelow 3, R. Kaita 2, B.
Effect of 3-D fields on edge power/particle fluxes between and during ELMs (XP1026) A. Loarte, J-W. Ahn, J. M. Canik, R. Maingi, and J.-K. Park and the.
NSTX-Upgrade Magnetics And Related Diagnostics SPG NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu.
First results of fast IR camera diagnostic J-W. Ahn and R. Maingi ORNL NSTX Monday Physics Meeting LSB-318, PPPL June 22, 2009 NSTX Supported by College.
NSTX NSTX TF, PF and umbrella Upgrade Internal ReviewFeb 24, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
NSTX NSTX LidsJuly 6, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar.
NSTX Team Meeting June 30, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Supported by Office of Science NSTX S.M. Kaye, PPPL ITPA PPPL 5-7 Oct Confinement and Transport in NSTX: Lithiumized vs non-Lithiumized Plasmas Culham.
Planning for Toroidal Lithium Divertor Target for NSTX and Supporting Experiments on CDX-U/LTX R. Kaita Boundary Physics Science Focus Group Meeting July.
Upgrades to PCS Hardware (Incomplete) KE, DAG, SPG, EK, DM, PS NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo.
NSTX 2007 MHD XP Review – J. Menard 1 Optimization of RFA detection algorithms during dynamic error field correction Presented by: J.E. Menard, PPPL Final.
Solenoid-free Plasma Start-up in NSTX using Transient CHI Office of Science 22 nd IAEA Fusion Energy Conference October 13-18, 2008, Geneva College W&M.
XP-945: ELM Pacing via Vertical Position Jogs S.P. Gerhardt, J.M. Canik, D. Gates, R. Goldston, R. Hawryluk, R. Maingi, J. Menard, S. Sabbagh, A. Sontag.
Preliminary Results from XP1020 RFA Measurements J.W. Berkery Department of Applied Physics, Columbia University, New York, NY, USA NSTX Monday Physics.
Raman, Dec051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
V. A. Soukhanovskii, XP1002 Review, 9 June 2010, Princeton, NJ 1 of 9 XP 1002: Core impurity density and P rad reduction using divertor condition modifications.
Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas S. S. Medley 1, D. Liu 2, M. V. Gorelenkova 1,
Advanced Scenario Development on NSTX D. A. Gates, PPPL For the NSTX Research Team 50th APS-DPP meeting Dallas, TX November 17, 2008 College W&M Colorado.
NSTX-U Collaboration Status and Plans for: M.I.T. Plasma Science and Fusion Center Abhay K. Ram, Paul Bonoli, and John Wright NSTX-U Collaborator Research.
1 Status of the 2008 ASC TSG Run plan Presented by D. A. Gates (J. Menard Deputy) At the NSTX Mid-run asessment PPPL April 16, 2008 Supported by Office.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle Update on the NSTX Run Plan PPPL, Princeton, NJ, 15 May, 2006 Supported by Office.
Monitoring impact of the LLD Adam McLean, ORNL T. Gray, R. Maingi Lithium, TSG group preliminary research forum PPPL, B252 Nov. 23, 2009 NSTX Supported.
GO : Progress toward fully non-inductive operation in NSTX Jonathan Menard, PPPL For the NSTX Team 47 th Annual Meeting of the DPP Monday–Friday,
Comments on HC Measurements for NSTX- Upgrade SPG CS Upgrade Meeting 11/2/11 NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
Correlation between Electron Transport and Shear Alfven Activity in NSTX College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins.
XP-950: XP-950: Dependence of metallic impurity accumulation on I p and the outer gap in the presence of lithium deposition S. Paul, S. P. Gerhardt are.
Demonstration of Coupling CHI Started Discharges to Induction in NSTX R. Raman 1, B.A. Nelson 1, T.R. Jarboe 1, D. Mueller 2, M.G. Bell 2, J. Menard 2,
Presentation transcript:

1 Solenoid-free Plasma Start-up In NSTX Using Transient Coaxial Helicity Injection Roger Raman, Univ. of Washington For the NSTX Team University of Maryland 9 May 2006 College Park, MD Acknowledgments T.R. Jarboe, D. Mueller, B.A. Nelson, M.G. Bell, M. Ono, M.J. Schaffer Institutions Univ. of Washington, PPPL, ORNL, GA, Nova Photonics Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester U Washington U Wisconsin Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAERI Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

2 Outline Motivation for solenoid-free plasma startup Helicity Injection & Implementation of CHI Requirements for Transient CHI Experimental results from NSTX Brief summary of HIT-II results Brief summary of other plasma-startup methods Summary and Conclusions

3 Solenoid-free Plasma Startup is Essential for the Viability of the ST Concept Elimination of the central solenoid: – Simplifies the engineering design of tokamaks (Re: ARIES AT & RS) –Allows access to lower aspect ratio (high β) CHI is capable of both plasma start-up and edge current in a pre-established diverted discharge - Edge current profile for high beta discharges

4 160 kA of closed flux current produced in NSTX, without using a solenoid Transient Coaxial Helicity Injection (CHI), previously demonstrated on HIT-II* at U- Washington Important step in the production of a starting equilibrium for solenoid free operation Conventional tokamak uses solenoid –ARIES-AT has no solenoid ST has advantages of high β and good  E –ST reactor cannot use solenoid –Alternate method for plasma startup is essential for ST concept –Could also reduce the cost of a future tokamak reactor *R. Raman, T.R. Jarboe, B.A. Nelson et al., Phys Rev. Lett (2003)

5

6 To inject helicity one must apply voltage to a flux tube

7 NSTX incorporates toroidal insulation breaks to enable CHI operation Transient CHI: Axisymmetric reconnection leads to formation of closed flux surfaces. Driven (Steady State) CHI: Non-axisymmetric modes needed for closed flux generation Fast Camera (R. Maqueda, Nova Photonics & L. Roquemore, PPPL)

8 NSTX CHI Builds on Progress made on HIT-II HIT-II (R/a = 0./0.2m) NSTX: (R/a = 0.86/0.68m, 30x HIT-II Vol)

9 Simultaneous Requirements for Transient CHI Bubble burst current*: = injector flux = flux foot print width = current in TF coil Time needed to displace toroidal flux –For typical voltage at the injector after breakdown ~500V need ~1 ms to displace 600 mWb Energy for peak toroidal current: Exceed Energy for ionization and heating to 20eV (~50eV/D) –For 2 Torr.L injected, need ~2kJ * T.R. Jarboe Fusion Tech. 15, 7 (1989)

10 Upgrades that enabled progress in Transient CHI Replaced rectifier PS with capacitor PS Added MOV and Snubber Gas & microwave injection from lower divertor region Improved Absorber insulator design Discharge resistor across capacitor bank

11 Improved pre-ionization to a level that results in injected gas 10 times less than in 2004 Location of center stack Divertor gap ECH: T. Bigelow (ORNL) Injected gas amount now same as that used for inductive discharges

12 Closed flux current generation by Transient CHI Abs. Arc R. Raman, B.A. Nelson, MG.Bell, et al., PRL 97, (2006)

13 Discharges without an absorber arc show high current multiplication ratios of 60 Zero injector current

14 Improvement in high current generation due to operation at higher voltage LRDFIT (J. Menard) 2006 discharges operated at higher toroidal field and injector flux EFIT is done when no injector current is present Magnetic sensors and flux loops used in reconstruction

15 Electron temperature and density profiles become less hollow with time : Black: 8ms, Red: 12ms Thomson Scattering (B. LeBlanc) Profile becomes less hollow with time Plasma and Injector current 8 ms 12 ms

16 Some discharges persist for as long as the equilibrium coil currents are maintained. Fast camera: R. Maqueda These discharges are sensitive to gas pressure

17 Movie of a high current discharge. Fast Camera: R. Maqueda & L. Roquemore

18

19 Highest ever plasma current on HIT-II (300 kA) obtained using CHI start-up No transient coil currents –Discharges initiated & maintained in diverted configuration CHI is more tolerant to field errors –Discharges can be initiated when -V Loop is applied to CHI

20 Current multiplication needed for larger machines achieved on NSTX Attainable current multiplication (CM) is given as: For similar values of B T, toroidal flux, So CM in NSTX should be 10x HIT-II, which is observed CM is understood from HIT-II and NSTX results No reason to believe CM will get worse in a larger machine (may get better)

21 Maximum injector currents determined by system voltage limits Assuming constant resistivity on field lines, For similar values of, at the same voltage, in HIT-II should be ~10 x NSTX Consistent with observed ~15-30kA in HIT-II vs ~2-4 kA in NSTX Also consistent with the bubble burst relation, which requires 10x more current in HIT-II than in NSTX With 10-20kA of injector current MA levels of startup current should be possible in larger STs

22 Full 2kV capability in NSTX would increase Ip ~ 300kA. HIT-II data: R. Raman, T.R. Jarboe et al., Nuclear Fusion, 45, L15-L19 (2005) Voltage, flux optimization allowed HIT-II to increase closed flux current as capacitor charging voltage was increased

23 Plasma Startup Using Outer Poloidal Field Coils Outer PFs has been used to startup the plasma: MAST (START) - poloidal field coils + radial compression JT-60U - Aggressive application of RF heating and current drive Three important conditions for “Inductive” plasma startup: 1. Satisfy the “Lloyd condition” for plasma startup. With strong ECH (in DIII-D), E T ·B T / B P ≥ 0.12 kV/m. 2. The field null must be maintained for a sufficient duration 2 – 3 ms in the presence of wall eddy currents. 3.Sufficient available flux for subsequent current ramp up to ~ 500 kA.

24 Creation of High-Quality Field-Null with Significant Poloidal Flux is Possible with NSTX PF Coils Radial profile of fluxMod-B  contours (Gauss) Flux contours ~0.15 Vs available on NSTX 1 MA achieved with ~0.3 Vs from solenoid Sugggests possibility of ~ 500 kA in NSTX - ~20 kA produced in FY Improvements to pre-ionization are needed - e.g. plasma injectors, ECH 24 kA - 24 kA 3.4 kA W. Choe, J. Kim and M. Ono, NF 45 (2005) 1463

25 J. Menard Improved preionization and PF coil waveforms to be optimized Solenoid-free Start-up with Outer Poloidal Field Coils Three scenarios being investigated

26 At low I Inj and/or high pitch angle, helical current filaments form –M = I p /I inj = Geometric stacking Filaments merge into cylindrical sheet as I Inj increased, pitch decreased – M > Geometric stacking At low fields (B  ≈ 0.01 T, B  ≈ T), tokamak-like relaxation occurs –M >> Geometric stacking FilamentsReconnected SheetRelaxed GDG, ISTW 2006, Chengdu Pegaus – Plasma Gun Injector Produces Current Filaments Relaxed plasmas can be formed Greg Garstka (Pegasus)

27 160kA closed flux current in NSTX validates feasibility of CHI for high current generation NSTX has addressed the plasma startup issue for the ST by demonstrating a viable alternate plasma startup method –World record for non-inductively generated closed flux current –Other Solenoid-Free plasma start-up methods are also being tried (Synergistic effects) 1)demonstration of the process in a vessel volume thirty times larger than HIT-II on a size scale more comparable to a reactor, 2)a remarkable multiplication factor of 60 between the injected current and the achieved toroidal current, compared to six in previous experiments, 3)results were obtained on a machine designed with mainly conventional components and systems, 4)indicate favorable scaling with machine size 5)HIT-II results indicate efficient coupling to other current drive methods is feasible Future experiments in NSTX to explore coupling to OH –200kW ECH to heat the CHI plasma –Coupling to RF and NBI