Coupling Solenoid-free Coaxial Helicity Injection Started Discharges to Induction in NSTX Office of Science R. Raman University of Washington For the NSTX.

Slides:



Advertisements
Similar presentations
Potential Upgrades to the NBI System for NSTX-Upgrade SPG, TS NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U.
Advertisements

Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, M.G. Bell 2, T.R. Jarboe 1, B.A. Nelson 1, D.Mueller 2, R. Maqueda 3, R. Kaita 2,
Study of tearing mode stability in the presence of external perturbed fields Experimental validation of MARS-K/Q and RDCON codes Z.R. Wang 1, J.-K. Park.
NSTX-U T&T TSG Contributions to FY15 JRT NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U.
Summary of Presentations on Plasma Start-up and Progress on Small ST devices from STW2011 R. Raman University of Washington, Seattle, WA The Joint Meeting.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman Final XP Review June 5, 2009 NSTX Supported by.
Raman, APS051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
1 Solenoid-free Plasma Start-up In NSTX Using Transient Coaxial Helicity Injection Roger Raman, Univ. of Washington For the NSTX Team University of Maryland.
NSTX Status and Plans College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York.
NSTX Team Meeting May 28, 2008 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL.
Relay Feedback and X-point Height Control Egemen Kolemen S. Gerhardt and D. A. Gates 2010 Results Review Nov/30/2010 NSTX Supported by College W&M Colorado.
PCS Navigation D. Mueller January 26-28, 2010 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS.
Current status of high k scattering system J. Kim 1, Y. Ren 2, K-C. Lee 3 and R. Kaita 2 1) POSTECH 2) PPPL 3) UC Davis NSTX Monday Physics Meeting LSB-318,
1 Update on Run Schedule R. Raman NSTX Team Meeting PPPL, Princeton, NJ, 08 February, 2006 Work supported by DOE contract numbers DE-FG02-99ER54519 AM08,
Demonstration of 200 kA CHI Startup Current Coupling to Transformer Drive on NSTX B.A. Nelson, R. Raman, T.R. Jarboe, University of Washington D. Mueller,
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
Simple As Possible Plasmas (SAPP) on NSTX Adam McLean, ORNL Boundary TSG Session NSTX Research Forum Dec. 2, 2009 NSTX Supported by College W&M Colorado.
Radiative divertor with impurity seeding in NSTX V. A. Soukhanovskii (LLNL) Acknowledgements: NSTX Team NSTX Results Review Princeton, NJ Wednesday, 1.
NSTX Effects of NTSX Upgrades on DiagnosticsFebruary 8, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns.
Direct measurement of plasma response using Nyquist Contour Z.R. Wang 1, J.-K. Park 1, M. J. Lanctot 2, J. E. Menard 1,Y.Q. Liu 3, R. Nazikian 1 1 Princeton.
Solenoid-free Start-up and Ramp-up Progress and Plans for Office of Science R. Raman and D. Mueller For the NSTX Research Team NSTX 5 Year Plan.
Second Switching Power Amplifier (SPA) Upgrade Physics Considerations Discussion S.A. Sabbagh 1, and the NSTX Research Team 1 Department of Applied Physics,
Absorber arc mitigation during CHI on NSTX D. Mueller, M.G. Bell, A.L. Roquemore, R. Raman, B.A. Nelson, T.R. Jarboe and the NSTX Research Team DPP09 Meeting.
CHI Run Summary for March 10-12, 31 & April 9, 2008 Flux savings from inductive drive of a Transient CHI started plasma (XP817) R. Raman, B.A. Nelson,
Summary of the SFPS XPs R. Raman, D. Mueller University of Washington Princeton Plasma Physics Laboratory and the NSTX Research Team FY09 NSTX Results.
XP817: Transient CHI – Solenoid free Plasma Startup and Coupling to Induction Office of Science R. Raman, B.A. Nelson, D. Mueller, T.R. Jarboe, M.G. Bell.
Progress and Plans for Solenoid-free Plasma Start-up and Ramp-up R. Raman D. Mueller, S.C. Jardin and the NSTX-U Research Team NSTX-U PAC-35 Meeting PPPL.
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
Xp705: Multimode ion transport: TAE avalanches E D Fredrickson, N A Crocker, N N Gorelenkov, W W Heidbrink, S Kubota, F M Levinton, H Yuh, R E Bell NSTX.
Development of Improved Vertical Position Control S.P. Gerhardt, E. Kolemen ASC Session, NSTX 2011/12 Research Forum Location Date NSTX Supported by College.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle NSTX Run Usage 27 February – 5 May, 2006 NSTX Mid-Run Assessment PPPL, Princeton,
NSTX Upgrade Project – Final Design Review June , NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
Energy Confinement Scaling in the Low Aspect Ratio National Spherical Torus Experiment (NSTX) S. M. Kaye, M.G. Bell, R.E. Bell, E.D. Fredrickson, B.P.
Some Halo Current Measurements in 2009 S.P. Gerhardt Thanks to: E. Fredrickson, H. Takahashi, L. Guttadora NSTX Results Review, 2009 NSTX Supported by.
NSTX Team Meeting February 7, 2007 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U.
Supported by Office of Science NSTX H. Yuh (Nova Photonics) and the NSTX Group, PPPL Presented by S. Kaye 4 th T&C ITPA Meeting Culham Lab, UK March.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman XP Review - ASC Feb 2, 2009 NSTX Supported by College.
Supported by Office of Science NSTX S.M. Kaye, PPPL For the NSTX Research Team ITPA T&C Mtg. Naka, Japan 31 March – 2 April 2009 The Effect of Rotation.
Solenoid Free Plasma Startup Progress and Plans R. Raman, D. Mueller S.C. Jardin (Theory) for the NSTX Research Team NSTX PAC-29 PPPL B318 January 26-28,
1 Plasma Start-up In NSTX Using Transient CHI R. Raman, T.R. Jarboe 1, D. Mueller 2, B.A. Nelson 1, M.G. Bell 2, M. Ono 2, T. Bigelow 3, R. Kaita 2, B.
Overview of Results from the FY10 National Spherical Torus Experiment Run Eric Fredrickson For the NSTX Team NSTX Supported by College W&M Colorado Sch.
NSTX Team Meeting December 21, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Enhancement of edge stability with lithium wall coatings in NSTX Rajesh Maingi, Oak Ridge National Lab R.E. Bell, B.P. LeBlanc, R. Kaita, H.W. Kugel, J.
1 Plasma Start-up In NSTX Using Transient CHI R. Raman, T.R. Jarboe 1, D. Mueller 2, B.A. Nelson 1, M.G. Bell 2, M. Ono 2, T. Bigelow 3, R. Kaita 2, B.
Effect of 3-D fields on edge power/particle fluxes between and during ELMs (XP1026) A. Loarte, J-W. Ahn, J. M. Canik, R. Maingi, and J.-K. Park and the.
Solenoid Free Plasma Start-up Mid-Run Summary (FY 2008) R. Raman and D. Mueller Univ. of Wash. / PPPL 16 April 2008, PPPL 1 Supported by Office of Science.
First results of fast IR camera diagnostic J-W. Ahn and R. Maingi ORNL NSTX Monday Physics Meeting LSB-318, PPPL June 22, 2009 NSTX Supported by College.
NSTX NSTX TF, PF and umbrella Upgrade Internal ReviewFeb 24, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
NSTX NSTX LidsJuly 6, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar.
NSTX Team Meeting June 30, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Supported by Office of Science NSTX S.M. Kaye, PPPL ITPA PPPL 5-7 Oct Confinement and Transport in NSTX: Lithiumized vs non-Lithiumized Plasmas Culham.
Planning for Toroidal Lithium Divertor Target for NSTX and Supporting Experiments on CDX-U/LTX R. Kaita Boundary Physics Science Focus Group Meeting July.
Upgrades to PCS Hardware (Incomplete) KE, DAG, SPG, EK, DM, PS NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo.
NSTX 2007 MHD XP Review – J. Menard 1 Optimization of RFA detection algorithms during dynamic error field correction Presented by: J.E. Menard, PPPL Final.
Solenoid-free Plasma Start-up in NSTX using Transient CHI Office of Science 22 nd IAEA Fusion Energy Conference October 13-18, 2008, Geneva College W&M.
Presently Planned Vacuum-Side Diagnostics for the NSTX-Upgrade Center Column NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
XP-945: ELM Pacing via Vertical Position Jogs S.P. Gerhardt, J.M. Canik, D. Gates, R. Goldston, R. Hawryluk, R. Maingi, J. Menard, S. Sabbagh, A. Sontag.
Preliminary Results from XP1020 RFA Measurements J.W. Berkery Department of Applied Physics, Columbia University, New York, NY, USA NSTX Monday Physics.
Raman, Dec051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
V. A. Soukhanovskii, XP1002 Review, 9 June 2010, Princeton, NJ 1 of 9 XP 1002: Core impurity density and P rad reduction using divertor condition modifications.
Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas S. S. Medley 1, D. Liu 2, M. V. Gorelenkova 1,
Advanced Scenario Development on NSTX D. A. Gates, PPPL For the NSTX Research Team 50th APS-DPP meeting Dallas, TX November 17, 2008 College W&M Colorado.
1 Status of the 2008 ASC TSG Run plan Presented by D. A. Gates (J. Menard Deputy) At the NSTX Mid-run asessment PPPL April 16, 2008 Supported by Office.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle Update on the NSTX Run Plan PPPL, Princeton, NJ, 15 May, 2006 Supported by Office.
Monitoring impact of the LLD Adam McLean, ORNL T. Gray, R. Maingi Lithium, TSG group preliminary research forum PPPL, B252 Nov. 23, 2009 NSTX Supported.
Comments on HC Measurements for NSTX- Upgrade SPG CS Upgrade Meeting 11/2/11 NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
Correlation between Electron Transport and Shear Alfven Activity in NSTX College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins.
XP-950: XP-950: Dependence of metallic impurity accumulation on I p and the outer gap in the presence of lithium deposition S. Paul, S. P. Gerhardt are.
NSTX NSTX Upgrade Project – Final Design ReviewJune 22-24, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
Demonstration of Coupling CHI Started Discharges to Induction in NSTX R. Raman 1, B.A. Nelson 1, T.R. Jarboe 1, D. Mueller 2, M.G. Bell 2, J. Menard 2,
Presentation transcript:

Coupling Solenoid-free Coaxial Helicity Injection Started Discharges to Induction in NSTX Office of Science R. Raman University of Washington For the NSTX Research Team 14 th International ST Workshop & 4 th IAEA TM on ST October 7-10, 2008, Frascati College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester U Washington U Wisconsin Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec Supported by B.A. Nelson 1), D. Mueller 2), S.C. Jardin 2), T.R. Jarboe 1), M.G. Bell 2), H.W. Kugel 2), B. LeBlanc 2), R. Maqueda 3), J. Menard 2), M. Nagata 4), M. Ono 2) 1) University of Washington, Seattle, WA, USA 2) Princeton Plasma Physics Laboratory, Princeton, NJ, USA 3) Nova Photonics, Princeton, NJ, USA 4) University of Hyogo, Himeji, Japan

14 th ISTW- (Raman)October 7-10, Motivation For Solenoid-Free Plasma Startup The development of methods for solenoid-free current initiation would improve the prospects of the low aspect-ratio Spherical Torus as a CTF and fusion reactor –Could also aid ARIES-AT design Of the three large tokamaks in the US (DIII-D, NSTX, C-MOD) only NSTX is engaged in solenoid-free plasma startup research Transient Coaxial Helicity Injection (CHI) created plasmas in toroidal equilibrium carrying significant plasma current developed in HIT-II at Univ. of Washington Method has now produced 160 kA closed-flux current in NSTX – World record for non-inductively generated current in ST or Tokamak

14 th ISTW- (Raman)October 7-10, Transient CHI: Axisymmetric reconnection leads to formation of closed flux surfaces CHI for an ST: T.R. Jarboe, Fusion Technology, 15 (1989) 7 Transient CHI: R. Raman, T.R. Jarboe, B.A. Nelson, et al., PRL 90, (2003) Demonstration of closed flux current generation –Aided by gas and EC-Pi injection from below divertor plate region Demonstration of coupling to induction (2008) –Aided by staged capacitor bank capability

14 th ISTW- (Raman)October 7-10, Simultaneous Requirements for Transient CHI * T.R. Jarboe Fusion Tech. 15, 7 (1989) Bubble burst current*: = injector flux = flux foot print width = current in TF coil Time needed to displace toroidal flux –For typical voltage at the injector after breakdown ~500V need ~1 ms to displace 600 mWb Energy for peak toroidal current: Exceed Energy for ionization and heating to 20eV (~50eV/D) –For 2 Torr.L injected, need ~2kJ

14 th ISTW- (Raman)October 7-10, NSTX Plasma is ~ 30 x Plasma Volume of HIT-II Concept exploration device HIT-II Built for developing CHI Many Close fitting fast acting PF coils 4 kV CHI capacitor bank Proof-of-Principle NSTX device Built with conventional tokamak components Few PF coils 1.7 kV CHI capacitor bank

14 th ISTW- (Raman)October 7-10, Very high current multiplication (~70) aided by higher Toroidal Field: I p = I inj (  Tor  Pol ) 2006 discharges operated at higher toroidal field and injector flux –Record 160kA non-inductively generated closed flux current in ST or Tokamak produced in NSTX Used LRDFIT reconstructions R. Raman, B.A. Nelson, M.G. Bell et al., PRL 97, (2006) LRDFIT (J. Menard)

14 th ISTW- (Raman)October 7-10, Discharges Without Absorber Arc Have High Current Multiplication Ratios (I p /I inj ~ 70)

14 th ISTW- (Raman)October 7-10, 2008 Simulations using the TSC code are able to reproduce many of the experimentally observed features 8 TSC (developed by S.C. Jardin of PPPL): Time-dependent, free-boundary, predictive equilibrium and transport code. It uses as input the NSTX vessel geometry and external circuit parameters. - Discharge similar to shot is simulated - Injector voltage applied at 5ms and reduced to zero at about 10ms

14 th ISTW- (Raman)October 7-10, 2008 At higher B T, higher injector voltage is needed to satisfy the bubble burst condition 9 (a)B T = 0.3 T, E-field = 18 volts/m – Inj. Current = 6kA, Ip = 90kA (b)B T = 0.5 T, E-field = 18 volts/m – Inj. Current = 3kA, Ip = 60kA (c)B T = 0.5 T, E-field = 30 volts/m – Inj. Current = 5kA, Ip = 120kA - As the toroidal field is increased the injector impedance increases - At higher toroidal field the injector voltage needs to be increased Case C

14 th ISTW- (Raman)October 7-10, 2008 Voltage, Injector Flux, Toroidal Field Optimization allowed HIT-II to increase CHI produced current 10 - As the injector flux is increased, the toroidal field needs to be increased -At higher toroidal field the capacitor bank charging voltage needs to be increased HIT-II data HIT-II data: R. Raman, T.R. Jarboe et al., Nuclear Fusion, 45, L15-L19 (2005)

14 th ISTW- (Raman)October 7-10, Fast Camera Fish-eye Movie of CHI Started Discharge Note: -CHI discharge evolution from the lower divertor plate region -Discharge contacting upper divertor region (Absorber arc) - Detachment from the injector region - Closed flux equilibrium decaying and shrinking in size

14 th ISTW- (Raman)October 7-10, CHI started discharge couples to induction and transitions to an H-mode demonstrating compatibility with high-performance plasma operation Te & Ne from Thomson Ti from CHERS  Central Te reaches 800eV  Central Ti > 700eV Note the broad density profile during H-mode phase Discharge is under full plasma equilibrium position control −Loop voltage is preprogrammed Projected plasma current for CTF >2.5 MA [I p = I inj (  Tor  Pol )]* −Based on 50 kA injected current (Injector current densities achieved on HIT-II) −Current multiplication of 50 (achieved in NSTX) CHERS: R. Bell Thomson: B. LeBlanc *T.R. Jarboe, Fusion Technology, 15 (1989) 7

14 th ISTW- (Raman)October 7-10, 2008 CHI started discharges use <15 kJ of capacitor bank energy to generate 100kA startup currents 13 Discharge with center stack gas injection and higher NB power transitions to an H-mode After transitioning to an H-mode discharge reaches 1 keV electron temperature

14 th ISTW- (Raman)October 7-10, 2008 Discharges produced after Li divertor plate conditioning are more reproducible and reach higher currents 14 - Cryo pumping was not used for both discharges - Improved performance after coupling to induction is similar to that seen on HIT-II with Ti gettering

14 th ISTW- (Raman)October 7-10, Need auxiliary heating or metal divertor plates to compensate for increased radiated power with more capacitors : 5mF (7.6kJ) : 10mF (15.3kJ) : 15mF (22.8kJ) Plasma Current Low-z impurity radiation increases with more capacitors –High Te in spheromaks (500eV) obtained with metal electrodes –Test with partial metal outer divertor plates during FY09 Upper divertor radiation also increases with more capacitors –Need to reduce absorber arcs –Absorber field nulling coils to be used during FY09 Assess benefits of partial metal plates + Absorber coils –Discharge clean divertor with high current DC power supply –Use 350kW ECH during FY11 Filter scope data: V. Soukhanovskii (LLNL)

14 th ISTW- (Raman)October 7-10, In HIT-II nearly all CHI produced closed flux current is retained during the subsequent inductive ramp All three discharges have the identical loop voltage programming Coupling current increases as injected flux is increased Ip ramp-up begins after input power exceeds radiated power –Auxiliary heating would ease requirements on current ramp- up system Radiated power can be decreased by using W or Mo target plates –Start-up plasma (inductive or CHI) is cold (few 10s of eV) –Reduce Low-Z line radiation HIT-II Results R. Raman, T.R. Jarboe, R.G. O’Neill, et al., NF 45 (2005) L15-L19 R. Raman, T.R. Jarboe, W.T. Hamp, et al., PoP 14 (2007)

14 th ISTW- (Raman)October 7-10, NSTX has Demonstrated a Viable Plasma Startup Method for the ST 1)160 kA closed flux current generation in NSTX validates capability of CHI for high current generation in ST –Modest requirements for increasing the CHI startup current to ~400kA 350 kW ECH to heat the CHI plasma Metal divertor plates to reduce low-z impurities ~20% increase in the capacitor bank voltage 2)Successful coupling of CHI started discharges to inductive ramp-up & transition to an H-mode demonstrates compatibility with high-performance plasma operation NSTX improvements over HIT-II demonstration of the process in a vessel volume thirty times larger than HIT-II on a size scale more comparable to a reactor, a remarkable multiplication factor of 70 between the injected current and the achieved toroidal current, compared to six in previous experiments, results were obtained on a machine designed with mainly conventional components and systems, favorable scaling with increasing machine size.