1 Chapter 30: Induction and Inductance Introduction What are we going to talk about in chapter 31: A change of magnetic flux through a conducting loop.

Slides:



Advertisements
Similar presentations
Faraday Generators/ Motors Induced Current Lenz’s Law/ Changing B
Advertisements

Faraday’s Law of Induction
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 20: Electromagnetic Induction.
NAT Review S.Y
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Physics 1304: Lecture 13, Pg 1 Faraday’s Law and Lenz’s Law ~ B(t) i.
Induced Voltages And Inductance Chapter 20 Hans Christian Oersted.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 23 Physics, 4 th Edition James S. Walker.
Dr. Jie ZouPHY Chapter 31 Faraday’s Law. Dr. Jie ZouPHY Outline Faraday’s law of induction Some observations and Faraday’s experiment Faraday’s.
Electromagnetic Induction
Physics 24-Winter 2003-L181 Electromagnetic Induction Basic Concepts Faraday’s Law (changing magnetic flux induces emf) Lenz’s Law (direction of induced.
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created? Gauss’s.
Announcements  Homework for tomorrow… Ch. 33: CQ 4, Probs. 10, 12, & 14 CQ1: CCW CQ2: push against resistive force 33.2: 0.10 T, out of page 33.3: 2.3.
Chapter 31 Faraday’s Law.
Biot-Savart Law The Field Produced by a Straight Wire.
Physics 121: Electricity & Magnetism – Lecture 11 Induction I Dale E. Gary Wenda Cao NJIT Physics Department.
CHAPTER 20, SECTION 1 ELECTRICITY FROM MAGNETISM.
Chapter 29:Electromagnetic Induction and Faraday’s Law
Magnetic Flux and Faraday’s Law of Induction
AP Physics Chapter 20 Electromagnetic Induction. Chapter 20: Electromagnetic Induction 20.1:Induced Emf’s: Faraday’s Law and Lenz’s Law : Omitted.
Magnetic Forces, Fields, and Faraday’s Law ISAT 241 Fall 2003 David J. Lawrence.
Chapter 22 Electromagnetic Induction. 1) Induced emf and induced current Changing B-field induces current.
Announcements WebAssign HW Set 7 due this Friday
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment A primary coil is connected to a battery and a secondary coil is connected to an ammeter.
General electric flux definition
Magnetic Induction Chapter Induced currents
Chapter 31 Faraday’s Law.
Chapter 31 Faraday’s Law. Induced Fields Magnetic fields may vary in time. Experiments conducted in 1831 showed that an emf can be induced in a circuit.
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment – Set Up A current can be produced by a changing magnetic field First shown in an experiment.
Chapter 31 Faraday’s Law. Introduction This section we will focus on the last of the fundamental laws of electromagnetism, called Faraday’s Law of Induction.
Induced Voltages and Inductance
1 Electromagnetic Induction Chapter Induction A loop of wire is connected to a sensitive ammeter When a magnet is moved toward the loop, the ammeter.
Chapter 3: Faraday’s Law. 2.1 Induced EMF and magnetic flux  Two circuits are not connected: no current?  However, closing the switch we see that the.
Lecture 9 Electromagnetic Induction Chapter 20.1  20.4 Outline Induced Emf Magnetic Flux Faraday’s Law of Induction.
Chapter 31 Faraday’s Law. Michael Faraday Great experimental physicist Great experimental physicist 1791 – – 1867 Contributions to early electricity.
Induced Voltage and Inductance
CHAPTER 31) FARADAY’S Law
Faraday’s Law and Induction
Chapter 31 Faraday’s Law Electricity generator, or from B to E. 1.Battery  Chemical emf 2.Motional emf 3.Faraday’s Law of Induction 4.Lentz Law about.
Faraday’s Law of Induction
Induction II. Law of Induction The magnitude of the induced emf in a circuit is equal to the rate at which the magnetic flux through the circuit is.
Magnetic Flux and Faraday’s Law of Induction
Review 1.
My Chapter 20 Lecture Outline.
Faraday’s Law and Inductance. Faraday’s Law A moving magnet can exert a force on a stationary charge. Faraday’s Law of Induction Induced emf is directly.
Induced Voltages and Inductance
Chapter 20 Electromagnetic Induction. Electricity and magnetism Generators, motors, and transformers.
Chapter 31 Faraday’s Law. Faraday’s Law of Induction – Statements The emf induced in a circuit is directly proportional to the time rate of change of.
Chapter 31 Faraday’s Law.
Magnetic Induction. Key Points about Induction  If the current in the primary circuit is constant, then the current in the secondary circuit is zero.
Faraday’s Law.
Generators & Motors Textbook Sections 23-6 – Physics.
Chapter 30 Lecture 30: Faraday’s Law and Induction: I.
Induction - Faraday’s Law Sections Physics 1161: Lecture 12 Changing Magnetic Fields create Electric Fields.
CHAPTER 20: INDUCED VOLTAGES AND INDUCTANCE HERRIMAN HIGH AP PHYSICS 2.
Slide 1Fig 31-CO, p.967. Slide 2 The focus of our studies in electricity and magnetism so far has been the electric fields produced by stationary charges.
Copyright © 2009 Pearson Education, Inc. Chapter 29 Electromagnetic Induction and Faraday’s Law.
ElectroMagnetic Induction. What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete.
PHY 102: Lecture Induced EMF, Induced Current 7.2 Motional EMF
 Electromagnetic Induction – The production of an emf (the energy per unit charge supplied by a source of electric current) in a conducting circuit by.
AP Physics ST Motional emf Lenz’s Law ireference.ca.
Induced Voltages and Inductance
Faraday’s Law.
FB = -evB Motional EMF FE = -eE B E - eE = evB E = vB Vind = LE = LvB
Electromagnetic induction
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
I2 is decreasing in magnitude I2 is constant
EMF Induced in a Moving Conductor (“Motional EMF”)
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Presentation transcript:

1 Chapter 30: Induction and Inductance Introduction What are we going to talk about in chapter 31: A change of magnetic flux through a conducting loop produces a current! What is lenz ’ s law? What is the relation between induction and energy transfer? What are eddy currents?

2 30-2: Two symmetric situations YES!! This is formulated in Faraday ’ s law. It is the basis for the electric generator!! We have seen (ch. 29) that: Current loop in a magnetic field leads to torque (the basis for the electric motor). Is the opposite also true? Does a torque on a loop in a magnetic field lead to a current?

3 30-2: Two experiments: Experiment #1: Loop of wire connected to a galvanometer. A magnet is moved towards or away from the loop. Result: an induced current is set up in the circuit as long as there is relative motion between the magnet and the coil (w/o a battery!!). The work per unit charged to produce the current is called the induced emf.

4 Experiment #2: Primary circuit has an emf, secondary circuit has no emf. Result: an induced emf (and current) is produced in the secondary circuit only when the current (and hence the magnetic flux) is changing.

5 30-3: Faraday ’ s law of induction E = - d  B /dt where  B is the magnetic flux through the circuit. The emf induced in a circuit is directly proportional to the time rate of change of magnetic flux through the circuit.

6 What factors effect the emf? The magnitude of B may vary with time The area of the circuit can change with time The angle (  ) between B and the  plane can change A combination of the above Checkpoint #1 If there are N loops, all of the same area: E = - N d  B /dt where  B is the magnetic flux through one loop circuit.

7 Some applications: Cooking utensils Ground fault interrupter (GFI) Microphone (or electronic guitar!!)

8 Ans V, 2.03 A. Example: A coil is wrapped with 200 turns of wire on the perimeter of a square frame of side 18 cm. The total resistance of the coil is 2W. B is  the plane of the coil and changes linearly from 0 to 0.5 T in 0.80 seconds. Find the emf in the coil while the field is changing. What is the induced current?

9 30.4: Lenz ’ s law: Lenz ’ s law says: The polarity of the induced emf is such that it tends to produce a current that will create a magnetic flux to oppose the change in magnetic flux through the loop. For example: What is the direction of the induced current in the figure? Why? The current is clockwise. What happens if you stop? What happens if you reverse direction?

10 Checkpoint #2 Another example: a bar magnet is moved to the left/ right toward a stationary loop of wire.

: Induction and energy transfers q E = q v B Consider a straight conductor (length l) moving with constant velocity (v to the right) in a perpendicular magnetic field (B into the page). Electrons will move towards the bottom and accumulate there leaving a net positive charge at the top until:

12 Notice that:  B = B l x Therefore, a potential difference V will be created across the conductor: V = E l = B l v The upper end is at higher potential. Which end is at a higher potential? If the direction of motion is reversed, the polarity of V is also reversed.

13 Therefore, the induced emf E is: E = -d  B /dt = - B l v The induced current is: i = B l v/R This power is dissipated in the resistor (i 2 R)!! The power (P) delivered by the applied force is (from phys-101): P = F app v = i l B v = (Blv) 2 /R = E 2 /R

14 The power applied: P app = F v The induced emf: E = - d  B /dt = B l v i = B l v/R If there is a rectangular circuit part of which is in perpendicular magnetic field and is being pulled out of the field, you must apply a constant force (F) in order for the circuit to move with constant speed (v).

15 Therefore, the force exerted on the wire is: F = i l B = B 2 l 2 v/R The power delivered/ applied due to the wire is: P app = B 2 l 2 v 2 /R But, the power dissipated is: P diss = i 2 R = B 2 l 2 v 2 /R Therefore, P diss = P app That is, the work you do in pulling the loop through the magnetic field appears as thermal energy in the loop!

16 Eddy currents: Checkpoint #3 و آخر دعوانا أن الحمد لله رب العالمين