MOA-II Microlensing Survey Takahiro Sumi (Nagoya University) the MOA collaboration Abe,F; Bennett,P.D;Bond, I. A.;Fukui,A;Furusawa,K; Hearnshaw, J. B.;Itow,Y;

Slides:



Advertisements
Similar presentations
Twenty Years of Microlensing Observations From the Andrzej Udalski Warsaw University Observatory Perspective.
Advertisements

EUCLID : From Dark Energy to Earth mass planets and beyond Jean-Philippe Beaulieu Institut dAstrophysique de Paris Dave Bennett University of Notre Dame.
Microlensing Surveys for Finding Planets Kem Cook LLNL/NOAO With thanks to Dave Bennett for most of these slides.
Astronomical Solutions to Galactic Dark Matter Will Sutherland Institute of Astronomy, Cambridge.
The MOA Project 2013 Observing Season
P.Tisserand Rencontres du Vietnam Final results on galactic dark matter from the EROS-2 microlensing survey ~ images processed - 55 million.
The Smallest Planet Orbiting the Smallest Star David Bennett University of Notre Dame for the MOA & OGLE Collaborations mobile phone:
18 th Conference on Gravitational Microlensing Microlensing Planetary and Binary Statistics from Generation-II OGLE-MOA-Wise Microlensing Planetary.
Detection and Photometric Monitoring of QSOs and AGN with COROT J. Surdej, J.Poels, J.-F. Claeskens, E. Gosset Institut d’Astrophysique et de Géophysique,
Astrophysical applications of gravitational microlensing By Shude Mao Ziang Yan Department of Physics,Tsinghua.
Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Microlensing search for extra-solar planets.
PLANET/Robonet : searching for low mass extra solar planets via microlensing. Jean-Philippe Beaulieu, Institut d’Astrophysique de Paris.
The three-dimensional structure of the Large and Small Magellanic Clouds from Red Giant Variables Philip Lah Collaborators: Laszlo Kiss Tim Bedding (University.
Other Science from Microlensing Surveys I or Microlenses as Stellar Probes By Jonathan Devor.
The Transient Universe: AY 250 Spring 2007 Extra Solar Planets Geoff Bower.
The Transient Universe: AY 250 Spring 2007 Existing Transient Surveys: Optical I: Big Apertures Geoff Bower.
Ge/Ay133 What (exo)-planetary science can be done with microlensing?
Planetary Microlensing for dummies Nick Cowan April 2006.
The Galactic Exoplanet Survey Telescope (GEST) D. Bennett (Notre Dame), J. Bally (Colorado), I. Bond (Auckland), E. Cheng (GSFC), K. Cook (LLNL), D. Deming,
Detection of Terrestrial Extra-Solar Planets via Gravitational Microlensing David Bennett University of Notre Dame.
OB390 and the new microlensing planets Christian Coutures Eso Santiago September 2006.
Searching for low mass extra solar planets via microlensing. Jean-Philippe Beaulieu, Virginie Batista, Arnaud Cassan, Christian Coutures, Jadzia Donatowicz,
DRM1 & Exoplanet Microlensing David Bennett University of Notre Dame.
Searches for exoplanets
The Chinese SONG proposal: scientific concerns Jianning Fu (Beijing Normal University) and Chinese SONG team Beijing ─ March 29, 2010 The third workshop.
OGLE-2003-BLG-235/MOA-2003-BLG-53: A Definitive Planetary Microlensing Event David Bennett University of Notre Dame.
Search for planetary candidates within the OGLE stars Adriana V. R. Silva & Patrícia C. Cruz CRAAM/Mackenzie COROT /11/2005.
住 貴宏 (大阪大学) MOA collaboration
The Microlensing Event Rate and Optical Depth Toward the Galactic Bulge from MOA-II Takahiro Sumi (Osaka University)
Studying cool planets around distant low-mass stars Planet detection by gravitational microlensing Martin Dominik Royal Society University Research Fellow.
Measuring Parameters for Microlensing Planetary Systems. Scott Gaudi Matthew Penny (OSU)
A Short Talk on… Gravitational Lensing Presented by: Anthony L, James J, and Vince V.
Microlensing Planets from the Ground and Space David Bennett University of Notre Dame.
Stellar variability monitoring in open clusters with mini-SONG X.B. Zhang National Astronomical Observatories, Chinese Academy of Sciences.
A Search for Earth-size Planets Borucki – Page 1 Roger Hunter (Ames Research Center) & Kepler Team March 26, 2010.
Microlensing, « blue dot team » Jean-Philippe Beaulieu Collaborators/interested by a microlensing program on EUCLID IAP : Batista, Marquette Observatoire.
Microlensing and Dark Matter Jan 2005 Kim Griest, UCSD.
Upgrade plan of the MOA 1.8-m telescope F. Abe MOA collaboration 19 Jan. 2009, 13th Microlensing Paris.
Searching for Frozen super Earth mass planet via microlensing. Jean-Philippe Beaulieu, Institut d’Astrophysique de Paris PLANET/ROBONET collaboration HOLMES.
Towards Earth mass planets via microlensing. Jean-Philippe Beaulieu, et al. HOLMES & PLANET Collaboration Institut d’Astrophysique de Paris Europlanet.
16th Microlensing Season of the Optical Gravitational Lensing Experiment A. Udalski Warsaw University Observatory.
EXTRASOLAR PLANETS FROM DOME -C Jean-Philippe Beaulieu Institut d’Astrophysique de Paris Marc Swain JPL, Pasadena Detecting extrasolar planets Transit.
Korean Astronomical Society Meeting, April 22, 2005 Scott Gaudi Harvard-Smithsonian Center for Astrophysics & Topics in the Search for Extrasolar Planets.
Extrasolar planets Emre Işık (MPS, Lindau) S 3 lecture Origin of solar systems 14 February 2006.
A STEP Expected Yield of Planets … Survey strategy The CoRoTlux Code Understanding transit survey results Fressin, Guillot, Morello, Pont.
Detection of Extrasolar Planets through Gravitational Microlensing and Timing Method Technique & Results Timing Method.
Microlensing planet surveys: the second generation Dan Maoz Tel-Aviv University with Yossi Shvartzvald, OGLE, MOA, microFUN.
Gravitational Lensing: How to See the Dark J. E. Bjorkman University of Toledo Department of Physics & Astronomy.
Chinese- international collaboration solved the central question: ”How common are planets like the Earth”
The WFIRST Microlensing Exoplanet Survey: Figure of Merit David Bennett University of Notre Dame WFIRST.
次世代位置天文衛星による 銀河系ポテンシャル測定 T. Sumi (Nagoya STE) T. Sumi (Nagoya STE) K.V. Johnston (Columbia) K.V. Johnston (Columbia) S. Tremaine (IAS) S. Tremaine (IAS)
Transiting Exoplanet Search and Characterization with Subaru's New Infrared Doppler Instrument (IRD) Norio Narita (NAOJ) On behalf of IRD Transit Group.
The Role of Transiting Planets Dave Latham (CfA) 30 May 2008.
20 th Microlensing Workshop Spitzer Microlens Detection of a Massive Remnant in a Well-separated Binary Yossi Shvartzvald Jet Propulsion Laboratory, California.
Cool planet mass function and a fly’s-eye ‘evryscope’ at Antarctica Philip Yock, Auckland, New Zealand 20th Microlensing Workshop Institut d'Astrophysique.
MOA-II microlensing exoplanet survey
Microlensing Working Group Review David Bennett (Notre Dame) MicroFUN Microlensing Follow-Up Network.
Takahiro Sumi STE lab., Nagoya University
EXPLORE/OC: Photometry Results for the Open Cluster NGC 2660 K. von Braun (Carnegie/DTM), B. L. Lee (Toronto), S. Seager (Carnegie/DTM), H. K. C. Yee (Toronto),
Astrophysical applications of gravitational microlensing(II) By Shude Mao Ziang Yan Department of Physics,Tsinghua.
Constraining the masses of OGLE microlenses with astrometric microlensing Noé Kains (STScI) with Kailash Sahu, Jay Anderson, Andrzej Udalski, Annalisa.
23 Years of Gravitational Microlensing by the Japan/NZ/USA MOA Project
Takahiro Sumi (Princeton) Laurent Eyer (Geneva Obs.)
Observing the parallax effect due to gravitational lensing with OSIRIS
Microlensing with CCDs
3677 Life in the Universe: Extra-solar planets
11/16/2018 Probing the Galactic Potential Using the μarcsec astrometric observations of Disk Stars T.   Sumi    (Nagoya STE) K.V.  Johnston (Columbia)
What (exo)-planetary science can be done with microlensing?
EXPLORING FREE FLOATING PLANETS WITH MICROLENSING
Extra Solar Planets - Worlds around Other Stars
Presentation transcript:

MOA-II Microlensing Survey Takahiro Sumi (Nagoya University) the MOA collaboration Abe,F; Bennett,P.D;Bond, I. A.;Fukui,A;Furusawa,K; Hearnshaw, J. B.;Itow,Y; Kilmartin, P. M.; Koki, K; Masuda, K.; Matsubara, Y.;Miyake,N; Muraki, Y.; Nagaya,M;Okumura,M; Ohnishi,K;Rattenbury, N. J.; Saitou,T;Sako, T.; Sullivan, D. J.;Sumi, T.;Tristram,P.; Wood, J. N.; Yock, P. C. M. Takahiro Sumi (Nagoya University) the MOA collaboration Abe,F; Bennett,P.D;Bond, I. A.;Fukui,A;Furusawa,K; Hearnshaw, J. B.;Itow,Y; Kilmartin, P. M.; Koki, K; Masuda, K.; Matsubara, Y.;Miyake,N; Muraki, Y.; Nagaya,M;Okumura,M; Ohnishi,K;Rattenbury, N. J.; Saitou,T;Sako, T.; Sullivan, D. J.;Sumi, T.;Tristram,P.; Wood, J. N.; Yock, P. C. M.

MOA (since 1995) ( Microlensing Observation in Astrophysics ) ( New Zealand/Mt. John Observatory, Latitude : 44  S, Alt: 1029m ) 1995~1998:MOA-0: 0.6m, 9Mpix 1999~2005:MOA-I : 0.6m, 24Mpix 2005~ :MOA-II: 1.8m, 80Mpix 1995~1998:MOA-0: 0.6m, 9Mpix 1999~2005:MOA-I : 0.6m, 24Mpix 2005~ :MOA-II: 1.8m, 80Mpix

MOA (until ~1500) ( The world largest bird which was in NZ ) height:3.5 m weight:240kg can not fly extinct 5 00 years ago ( Maori ate them) witnesses until ~1850. Remind me … height:3.5 m weight:240kg can not fly extinct 5 00 years ago ( Maori ate them) witnesses until ~1850. Remind me … Nessie

MOA’s scientific goals 1,Galactic Dark Matter (towards the LMC & SMC) Halo MACHOs or self-lensing? 1,Galactic Dark Matter (towards the LMC & SMC) Halo MACHOs or self-lensing?

Halo Dark Matter? or Self-lensing? Tisserand et al.2006 MACHO 5.7 yrs & EROS 5yrs

MOA’s scientific goals 1,Galactic Dark Matter (towards the LMC & SMC) Halo MACHOs or self-lensing? 2,The Galactic structure (towards the Bulge) Optical depth time scale,t E Red Clump Giants 1,Galactic Dark Matter (towards the LMC & SMC) Halo MACHOs or self-lensing? 2,The Galactic structure (towards the Bulge) Optical depth time scale,t E Red Clump Giants

the Galactic Bar structure (face on, from North)  8kpc  G.C. Obs. 1, Microlensing Optical depth,  (Alcock et al. 2000; Afonso et al.2003; Sumi et al. 2003;Popowski et al. 2004; Hamadache et al. 2006;Sumi et al. 2006) Event Timescale, t E =R E /v t, (Evans & Belokurov,2002, Wood & Mao 2005 )  M=1.6  M , axis ratio (1:0.3:0.2),  ~20  1, Microlensing Optical depth,  (Alcock et al. 2000; Afonso et al.2003; Sumi et al. 2003;Popowski et al. 2004; Hamadache et al. 2006;Sumi et al. 2006) Event Timescale, t E =R E /v t, (Evans & Belokurov,2002, Wood & Mao 2005 )  M=1.6  M , axis ratio (1:0.3:0.2),  ~20  2, Brightness of Red Clump Giant (RCG)and RRLyrae stars, (Stanek et al. 1997, Sumi 2004; Collinge, Sumi & Fabrycky, 2006 ) 2, Brightness of Red Clump Giant (RCG)and RRLyrae stars, (Stanek et al. 1997, Sumi 2004; Collinge, Sumi & Fabrycky, 2006 ) 3, Proper motions of RCG, (Sumi, Eyer & Wozniak, 2003; Sumi et al. 2004;Rattenbury et al.2007), Proper motion of 5M stars, I<18 mag,  ~1mas/yr 3, Proper motions of RCG, (Sumi, Eyer & Wozniak, 2003; Sumi et al. 2004;Rattenbury et al.2007), Proper motion of 5M stars, I<18 mag,  ~1mas/yr

MOA’s scientific goals 1,Galactic Dark Matter (towards the LMC & SMC) Halo MACHOs or self-lensing? 2,The Galactic structure (towards the Bulge) Optical depth time scale,t E Red Clump Giants 3,Exoplanets (towards the Bulge) Microlensing & transit 1,Galactic Dark Matter (towards the LMC & SMC) Halo MACHOs or self-lensing? 2,The Galactic structure (towards the Bulge) Optical depth time scale,t E Red Clump Giants 3,Exoplanets (towards the Bulge) Microlensing & transit

Theoretical v.s. Observation red : Gass Giants 青: Ice planets 緑: Rocky planets Ida & Lin, m/s 10m/s 1m/s Simulation Observation

Observational targets LMC 50kpc event rate: event rate: LMC,SMC : ~2 events/yr (  ~10 -7 ) LMC,SMC : ~2 events/yr (  ~10 -7 ) Bulge : ~500 events/yr (  ~10 -6 ) Bulge : ~500 events/yr (  ~10 -6 ) Planetary event : ~10 -2 Planetary event : ~10 -2 event rate: event rate: LMC,SMC : ~2 events/yr (  ~10 -7 ) LMC,SMC : ~2 events/yr (  ~10 -7 ) Bulge : ~500 events/yr (  ~10 -6 ) Bulge : ~500 events/yr (  ~10 -6 ) Planetary event : ~10 -2 Planetary event : ~ kpc, GC 

PLANET  FUN Pointing each candidatePointing each candidate High cadenceHigh cadence Strategy based on published photometryStrategy based on published photometry to catch short deviation. to catch short deviation. MOA (NewZealand) OGLE (Chile) Wide fieldWide field Low cadenceLow cadence Continuous surveyContinuous survey Microlensing observation network Survey Group Follow-up Group MicrolensingAlert Anomaly Anomaly Alert Alert Anyone who wants alert is welcome to sign up on the websites.

Paczyński’s Legacy The planet discovery via microlensing by collaboration of these groups are Paczyński’s Legacy Idea of the method. Idea of putting data on public and sharing photometry with other groups.  useful to decide strategy to catch rare short planetary deviation. The planet discovery via microlensing by collaboration of these groups are Paczyński’s Legacy Idea of the method. Idea of putting data on public and sharing photometry with other groups.  useful to decide strategy to catch rare short planetary deviation.

MOA-I (1999~2005) ( Microlensing Observation in Antrophysics ) ( New Zealand/Mt. John Observatory, Latitude : 44  S, Alt: 1029m ) Mirror : 0.6m CCD : 4k x 6k pix. FOV : 1.3 square deg. Seeing:~2 arcsec Mirror : 0.6m CCD : 4k x 6k pix. FOV : 1.3 square deg. Seeing:~2 arcsec

MOA-I filter

Difference Image Analysis (DIA) ObservedObservedsubtractedsubtracted

Results from MOA-I Mass : Jupiter Sep. : ~3AU Mass : Jupiter Sep. : ~3AU 1, Microlensing Optical depth towads GB (Sumi et al. 2003) 2, LP Variable stars in LMC (Noda et al. 2002,2004) 3, Stellar shape & limb darkning (abe et al.2003;Rattenbury et al.2005) 4, The first planet via microlensing (bond et al.2003) OGLE 2003-BLG-235/MOA 2003-BLG-53 (in collaboration with OGLE) etc…

LMC event from MOA-I (RA,DEC)=(05:13:48.7,-69:45:24.3) T= 2,122 days N= 3,743,244 stars T= 2,122 days N= 3,743,244 stars t E =70.80 u min = t 0 = RED BLUE

LMC event from MOA-I t E =70.80 u min = t 0 = RED BLUE

Planetary transits in MOA-I Bulge data #of stars <1.0 %: 0.1M stars <2.0 %: 1M stars Planning photometric follow-up by IRSF 1.4m IR telescope at SAAO #of stars <1.0 %: 0.1M stars <2.0 %: 1M stars Planning photometric follow-up by IRSF 1.4m IR telescope at SAAO

MOA-II1.8m telescope ( New Zealand/Mt. John Observatory at NZ, 44  S ) Mirror : 1.8m CCD : 8k x 10k pix. FOV : 2.2 deg. 2 Mirror : 1.8m CCD : 8k x 10k pix. FOV : 2.2 deg. 2 First light : 3/2005 Survey start : 4/2006

MOA-cam3 CCD :8k x 10k pix. (10 E2V CCD4482) Pixel size: 15μm FOV : 2.2 deg. 2 CCD :8k x 10k pix. (10 E2V CCD4482) Pixel size: 15μm FOV : 2.2 deg. 2

MOA-II filter

Observational time&Operation rate Operation rate = observation time / night time ≒ clear time Bulge

Observation towards LMC by MOA-II ~3obs/night~10obs/night Start alert in a few weeks

Discriminating from Super Nova (from SuperMACHO web)

Survey towards the Galactic Bulge why ?  need Wide Field for Many stars Probability: Probability:  Microlensing : ~10 -6 events/yr/star Planetary event : ~10 -2 Planetary event : ~10 -2 Probability: Probability:  Microlensing : ~10 -6 events/yr/star Planetary event : ~10 -2 Planetary event : ~10 -2 G.C.G.C. SunSun Time scale ~ 30days (M  ) ~ a few days (M Jup ) ~ a few days (M Jup ) ~ hours (M  ) ~ hours (M  )  need high cadence

Observation towards the Bulge by MOA-II 50 deg. 2  60GB/night 1obs./hr (M Jup ) 1obs./10min. (M  ) 50 deg. 2  60GB/night 1obs./hr (M Jup ) 1obs./10min. (M  )  ~170events (2006)  ~500events (2007)

Observational strategy (Han ) (Han & Kim, 2001) High magnification event we know when Low magnification event rate is higher we do not know when High magnification event we know when Low magnification event rate is higher we do not know when

Example light curves 〜50 obs/day 4days

Finite source effect ( MOA-2006-GLB- 130 ) Is= Is=21.07 mag

Real-time Anomaly check at Mt.John anomaly

The first planet via microlensing OGLE 2003-BLG-235/MOA 2003-BLG-53 OGLE 2003-BLG-235/MOA 2003-BLG-53 was detected by the OGLE EWS System on June 22, 2003 andOGLE EWS by the MOA group on July 21, MOA Mass : Jupiter Sep. : ~3AU

5.5 Earth mass Planet (Beaulieu et al. 2006, Nature,439,437) Sep~3AU The smallest Planet !

2nd & 3rd planets OGLE-2005-BLG M Jupiter, Udalski et al OGLE-2005-BLG-169, 13M Earth, Gould et al.2006 “Cool Neptune" planets may be relatively common, with frequency of >16% at 90% confidence.

High mag events in 2007 t E =, A max > t E =6.24  0.15days, A max >400 OGLE-2007-BLG-224 (MOA-2007-BLG-163) MOA-2007-BLG-312 (OGLE-2007-BLG-388) t E =, A max = t E =3.50  0.65 days, A max =102 MOA-2007-BLG-397 ( OGLE-2007-BLG-538 ) t E =, A max = t E =21.34  0.03 days, A max =404 MOA-2007-BLG-400 t E =, A max >800 t E =14.64  0.2 days, A max >800 Same field as ob349/mb379 JD

MOA-2007-BLG-192 q=, sep= q=6x10^-5, sep=0.9R E, 1.1R E, MOAOGLE preliminary

MOA-2007-BLG-197 1年 1年 q=3, sep= q=3x10 -3, sep= 1R E Orange: PLANET (Danis) Blue : PLANET (Tasmania) Red :PLANET SAAO Brown : MOA preliminary

OGLE-2007-BLG-368 (MOA-2007-BLG-308) q=~ q=~1x10^-4 MOAOGLEPLANET(Danish)PLANET(Tasmania-I)PLANET(SAAO-I)PLANET(Brasil)  FUN(CTIO-I)

OGLE-2007-BLG-349 (MOA-2007-BLG-379) q=, sep= q=2.8x10^-4, sep= 0.8R E VLTHST Images are taken preliminary

Summary of Planet candidates preliminary. Credit Bennett Gould et al. 2006: “Cool Neptune" planets may be relatively common with frequency of >16% at 90% confidence.” Also consistent with formation theory. ( Ida & Lin, 2004)

Number of planets via Microlensing

Free floating planet candidates t E =1.2days preliminary

Free floating planet candidates t E =1.2days preliminary N model (t E <5) = 0.7(Scalo) N observ (t E <5) = 4 54 events in 1/3of all fields In 2006 preliminary Kamiya et al in preparation

Summary We are working hard to finish MOA-I MOA, OGLE, PLANET and μFUN found ~5 exoplanets candidates via microlensing in (in preparation) Consistent with Gould et al. 2006: “Cool Neptune planets may be relatively common” Planet event rate increasing to ~4 planets/yr by all microlensing community’s effort. MOA-II demonstrated the power of wide FOV high cadence survey.  OGLE-IV ( & new Korean telescopes )  Global Wide FOV network for 24hrs We are working hard to finish MOA-I MOA, OGLE, PLANET and μFUN found ~5 exoplanets candidates via microlensing in (in preparation) Consistent with Gould et al. 2006: “Cool Neptune planets may be relatively common” Planet event rate increasing to ~4 planets/yr by all microlensing community’s effort. MOA-II demonstrated the power of wide FOV high cadence survey.  OGLE-IV ( & new Korean telescopes )  Global Wide FOV network for 24hrs