Maurizio Spurio Department of Physics and INFN – Bologna 1 M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010.

Slides:



Advertisements
Similar presentations
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Advertisements

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July The ANTARES Underwater Neutrino Telescope C.W. James, ECAP, University.
ANTARES and KM3NeT John Carr Centre de Physique de Particules de Marseille IN2P3 / MICINN meeting Madrid, 12 Jan 2009.
Status of the ANTARES Neutrino-Telescope Alexander Kappes Physics Institute University Erlangen-Nuremberg for the ANTARES Collaboration WIN´05, 6.–11.
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
J.P. Gómez-González. Outline Introduction: The ANTARES neutrino telescope Time calibration Muon track residuals based method: Description and implementation.
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
Antares/KM3NeT M. de Jong. neutrinos  p Scientific motivation: – origin cosmic rays – birth & composition relativistic jets – mechanism of cosmic particle.
SEARCHES for STEADY SOURCES of COSMIC NEUTRINOS in ANTARES J. P. Gómez-González, on behalf of the ANTARES Collaboration IFIC (CSIC-Universitat de València)
Results from the ANTARES Deep Sea Neutrino Telescope Maurizio Spurio On behalf of the ANTARES Collaboration Università di Bologna and INFN M.Spurio-MG13.
Search for point sources of cosmic neutrinos with ANTARES J. P. Gómez-González IFIC (CSIC-Universitat de València) The ANTARES.
Ersilio Castorina - Exotic Phys. with nu Telescopes, Uppsala Sept Exotic Physics searches in ANTARES Ersilio Castorina Pisa University and INFN.
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
The ANTARES detector status and results A.Margiotta
By Nicolas PICOT-CLEMENTE CNRS/CPPM, Marseille ANTARES experiment status and first results …
Apostolos Tsirigotis Simulation Studies of km3 Architectures KM3NeT Collaboration Meeting April 2007, Pylos, Greece The project is co-funded by the.
Report of the HOU contribution to KM3NeT TDR (WP2) A. G. Tsirigotis In the framework of the KM3NeT Design Study WP2 Meeting - Marseilles, 29June-3 July.
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
Antoine Kouchner Université Paris 7 Laboratoire APC - CEA/Saclay for the ANTARES collaboration Neutrino Astronomy: a new look at the Galaxy Astronomy Neutrino.
1 ANTARES a Neutrino Telescope in the Mediterranean Sea 31/01/2014 Salvatore Mangano.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
V.Bertin CPPM / ANTARES Coll. - Moriond ANTARES : A deep-sea 0.1 km² neutrino telescope Vincent Bertin - CPPM-Marseille on behalf of the Antares.
Susan Cartwright IDM2000 ANTARES : vStatus u site evaluation u demonstrator u detector design vProspects u physics aims u neutralino detection status and.
The ANTARES experiment in the Mediterranean sea: overview and first results 14 th Lomonosov conference on Elementary Particle physics Aug 2009 Moscow.
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
First data of ANTARES neutrino telescope Francisco Salesa Greus IFIC (CSIC–Universitat de València, Spain) On behalf of the ANTARES collaboration The 3rd.
Antares Neutrino Telescope Jean-Pierre Ernenwein Université de Haute Alsace (On behalf of the ANTARES collaboration) Rencontres de Moriond, 13/03/2005.
ANTARES  Physics motivation  Recent results  Outlook 4 senior physicists, ~5 PhD students, ~5 technicians M. de Jong RECFA 23 September 2005.
The ANTARES Deep Sea Neutrino Telescope CRIS2010, 14th Sept 2010 CRIS2010, 14th Sept 2010 Paschal Coyle Centre de Physique des Particules de Marseille.
Report of the HOU contribution to KM3NeT TDR (WP2) A. G. Tsirigotis In the framework of the KM3NeT Design Study WP2 Meeting - Erlangen, May 2009.
Dorothea Samtleben Leiden University / NIKHEF, Amsterdam.
Ronald Bruijn – 10 th APP Symposium Antares results and status Ronald Bruijn.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
Detection of electromagnetic showers along muon tracks Salvatore Mangano (IFIC)
CEA DSM Irfu Reconstruction and analysis of ANTARES 5 line data Niccolò Cottini on behalf of the ANTARES Collaboration XX th Rencontres de Blois 21 / 05.
The ANTARES detector: background sources and effects on detector performance S. Escoffier CNRS Centre de Physique des Particules de Marseille on behalf.
The ANTARES Project Sino-French workshop on the Dark Universe Stephanie Escoffier Centre de Physique des Particules de Marseille On behalf of the ANTARES.
ANTARES Results-Venezia Introduction.  astronomy 2. ANTARES. Optical detection. Infrastructure 3. Downgoing muons 4. Preliminary  data 5. Exotica.
Search for neutrinos from gamma-ray bursts with the ANTARES telescope D. Dornic for the ANTARES Collaboration.
The ANTARES Neutrino Telescope and its Dark Matter Capabilities
Time Calibration of the ANTARES Neutrino Telescope 2 nd International Conference on Technology and Instrumentation in Particle Physics 08 – 14 June 2011.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Status report on the Antares project Luciano Moscoso (DSM/DAPNIA, CEA/Saclay F Gif-sur-Yvette) (On behalf of the ANTARES collaboration)
Sebastian Kuch, Rezo Shanidze Preliminary Studies of the KM3NeT Physics Sensitivity KM3NeT Collaboration Meeting Pylos, Greece, April 2007.
Gamma-Ray Bursts with the ANTARES neutrino telescope S. Escoffier CNRS/CPPM, Marseille.
KM 3 Neutrino Telescope European deep-sea research infrastructure DANS – symposium Maarten de Jong.
Search for diffuse cosmic neutrino fluxes with the ANTARES detector Vladimir Kulikovskiy The ANTARES Collaboration 3-9 August 2014ANTARES diffuse flux.
V. Bertin - CPPM - PONT Avignon - April'14 Indirect search for Dark Matter with the ANTARES Neutrino Telescope Vincent Bertin - CPPM-Marseille on behalf.
Calibration of Under Water Neutrino Telescope ANTARES Garabed HALLADJIAN October 15 th, 2008 GDR Neutrino, CPPM, Marseille.
STATUS AND PHYSICS GOALS OF KM3NET Paolo Piattelli P. Piattelli, ICHEP14 Valencia INFN – LNS, Catania (Italy)
Stéphanie ESCOFFIER CPPM Marseille, France on behalf of the ANTARES Collaboration research goals detector setup selected results summary.
ANTARES Stato dell’esperimento Rinnovo del Memorandum di Understanding M.Anghinolfi : Responsabile nazionale dell’esperimento.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
Search for neutrinos from gamma-ray bursts with the ANTARES telescope
Search for magnetic monopoles with ANTARES
The Antares Neutrino Telescope
Systematic uncertainties in MonteCarlo simulations of the atmospheric muon flux in the 5-lines ANTARES detector VLVnT08 - Toulon April 2008 Annarita.
ANTARES.
M.Bou-Cabo, J.A. Martínez.-Mora on behalf of the ANTARES Collaboration
Status and recent results of the Antares Deep-sea Neutrino Telescope
MUPAGE: A fast muon generator
on behalf of the NEMO Collaboration
Claudio Bogazzi * - NIKHEF Amsterdam ICRC 2011 – Beijing 13/08/2011
Atmospheric muons in ANTARES
ICRC2011, 32ND INTERNATIONAL COSMIC RAY CONFERENCE, BEIJING 2011
P. Sapienza, R. Coniglione and C. Distefano
Acoustic Measurements in ANTARES: Status and Aims
Presentation transcript:

Maurizio Spurio Department of Physics and INFN – Bologna 1 M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010

2 among the most intriguing science questions: origin of cosmic rays  eV ? astrophysical acceleration mechanism ? origin of relativistic jets ? dark matter ? exotics Cosmic sources of neutrinos Extragalactic: Active Galactic Nuclei, GRBs Galactic: micro quasars, supernova remnants … neutrinos reach Earth undisturbed: need large detector and good angular resolution HESS TeV  rays (p+X   0   ) at the centre of our galaxy from supernova remnant RX J Expect: p+X     p n  Ref: EPJC 65 (2010) 649, arXiv: v2

M.Spurio- The ANTARES Neutrino Telescope ICHEP Mkn 501 Mkn 421 CRAB SS433 Mkn 501 RX J GX339-4 SS433 CRAB VELA Galactic Centre AMANDA / IceCube (South Pole) ANTARES (43 o N) 1.5  sr common view over a day acceptance visible sky

 CPPM, Marseille  DSM/IRFU/CEA, Saclay  APC, Paris  LPC, Clermont-Ferrand  IPHC (IReS), Strasbourg  Univ. de H.-A., Mulhouse  IFREMER, Toulon/Brest  C.O.M. Marseille  LAM, Marseille  GeoAzur Villefranche IFIC, Valencia UPV, Valencia UPC, Barcelona  NIKHEF (Amsterdam)  KVI (Groningen)  NIOZ Texel  University of Erlangen  Bamberg Observatory ISS, Bucarest  ITEP, Moscow  Moscow State Univ 7 COUNTRIES 28 INSTITUTES ~ 150 SCIENTISTS AND ENGINEERS  University/INFN of Bari  University/INFN of Bologna  University/INFN of Catania  LNS – Catania  University/INFN of Pisa  University/INFN of Rome  University/INFN of Genova 4 M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010

m ~60-75 m buoy 350 m 100 m Junction box readout cables 45 km electro- optical cable storey 12 detection lines 25 storeys/line 3x10” PMT/storey 885 PMT s

M.Spurio- The ANTARES Neutrino Telescope ICHEP Two kinds of background : 1. (Particle) Physics Background : cosmic rays (atmospheric  and ). 2. Optical Background: bioluminescence and 40 K decay (sea environment): Continuous 40 K (~30kHz) and bioluminescence (~40 kHz, long term average). Bursts from bioluminescence (~MHz). Two kinds of background : 1. (Particle) Physics Background : cosmic rays (atmospheric  and ). 2. Optical Background: bioluminescence and 40 K decay (sea environment): Continuous 40 K (~30kHz) and bioluminescence (~40 kHz, long term average). Bursts from bioluminescence (~MHz). ANTARES 5 Lines Full ANTARES

M.Spurio- The ANTARES Neutrino Telescope ICHEP Ref: arXiv Fast tracking: almost online to discriminate atmospheric muons /neutrinos; No detailed calibration/ no real time detector positioning needed Angular resolution:  3 o. Used in most analyses in this talk. The precise tracking: detailed real-time positioning of the detector; detailed PMTs charge/time calibration; detailed systematic knowledge of the apparatus (OMs angular acceptance, etc.) Angular resolution: up to  0.2 o. Used in the diffuse analysis search

M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010 height time 8 reconstruction of muon trajectory from time, charge and position of PMT hits assuming relativistic muon emitting Cherenkov light Fast tracking

M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010 Example of a reconstructed up-going muon (i.e. a neutrino candidate) detected in 6/12 detector lines: time height 9 Fast tracking

M.Spurio- The ANTARES Neutrino Telescope ICHEP

M.Spurio- The ANTARES Neutrino Telescope ICHEP Ref: arXiv: , Accepted to APP Dots: Data  MUPAGE Monte Carlo. [Com. Phys. Comm. 179(2009)915]  CORSIKA + QGSJET + NSU (model of the primary CR)  CORSIKA + SIBYLL + NSU  CORSIKA + QGSJET + “poly- gonato” model. Shadowed band: systematic uncertainty w.r.t. black line. Zenith angle distribution of reconstructed tracks from atmospheric  ’s  5 line detector. Fast tracking Main sources of syst. uncertainties: environmental parameters (absorption and scattering) detector parameters (OM efficiency) (physics) hadronic interaction models (physics) models of cosmic ray composition

M.Spurio- The ANTARES Neutrino Telescope ICHEP Fast tracking

M.Spurio- The ANTARES Neutrino Telescope ICHEP line data (May-Dec. 2007) line data (2008)= 341 days detector live time Upgoing: 1062 neutrino candidates: 3.1 ν candidates/day Monte Carlo: atmospheric neutrinos: 916 (30% syst. error) Wrong reco atmospheric  : 40 (50% syst. error) Fast tracking Zenith angle

M.Spurio- The ANTARES Neutrino Telescope ICHEP Fast tracking

M.Spurio- The ANTARES Neutrino Telescope ICHEP list of 25 potential sources (stringent cuts to reduce background) Analysis optimization based on simulations no excess found after 5-line data unblinding 140 days of detector livetime Fast tracking

M.Spurio- The ANTARES Neutrino Telescope ICHEP  direct photons +  scattered photons + light from EM showers Energy estimator= Repetition (R) of integration gate on the same Optical Module

M.Spurio- The ANTARES Neutrino Telescope ICHEP Precise tracking Wrongly reconstructed Well reconstructed

M.Spurio- The ANTARES Neutrino Telescope ICHEP Rejection of downward going atmospheric muons (using measured zenith angle, track quality parameter, number of hits) 2.Separation of the atmospheric background from signal using the energy estimator R 3.Blind analysis. Model Rejection Factor [APP 19 (2003)393] to select the best cut value on R (=1.31) predefined from MC only.

M.Spurio- The ANTARES Neutrino Telescope ICHEP R< 1.31 Bartol (conventional ) Max “prompt” model 2.1 Data 125 R  1.31 Atmospheric 10.7  2 Data 9 Precise tracking

M.Spurio- The ANTARES Neutrino Telescope ICHEP E 2  (E) 90% = 4.7×10 -8 GeV cm -2 s -1 sr TeV<E<2.5 PeV

M.Spurio- The ANTARES Neutrino Telescope ICHEP Log 10 (E  [GeV]) E 2   [GeV cm -2 s -1 sr -1 ] <1 : model rejected

M.Spurio- The ANTARES Neutrino Telescope ICHEP Receive GRB alerts from Satellites (Fermi, Swift...) search for coincident neutrinos within time window (~100 s) Send neutrino cluster alert for optical follow-up Trigger: multiple / HE single neutrino event; Reconstruction “on-line” (<10ms) Alert message to Tarot Telescope in La Silla (Chile). Tarot takes 6 images of 3 minutes immediately and after 1, 3, 9 and 27 days sending alerts to the ROTSE system (4 telescopes) Correlation with AUGER source distribution investigate directional correlation of neutrinos and UHE particles Correlation with VIRGO-LIGO signals investigate correlation of neutrinos and gravitational waves

M.Spurio- The ANTARES Neutrino Telescope ICHEP ANTARES continuously taking data complements the sky coverage of IceCube has a broad physics program determined most sensitive upper limit on diffuse flux paves the way for KM3NeT

M.Spurio- The ANTARES Neutrino Telescope ICHEP

25 angular resolution < 0.2° above  10 TeV limited tracking accuracy due to time resolution:  Light scattering  ~ 1.0 ns  TTS in PMT  ~ 1.3 ns  ti me calibration  < 0.5 ns  OM position  < 10 cm (↔  < 0.5 ns) dominated by reconstruction   rec −  gener.  rec − gener. dominated by kinematics angular resolution = difference between reconstructed and MC generated angles vs. neutrino energy M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010

Transceivers on the bottom of each line 5 hydrophones at specific heights on each line 4 autonomous transponders around the apparatus Sound velocimeters installed at various depths Tiltmeter and compass at each storey Measurements performed every 2 minutes 20 days resolution better than 10 cm Position of hydrophone relative to line base location 26 M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010

3 OMs Optical LED beacon - Electronics + calibration   ~ 0.5 ns - TTS in photomultipliers   ~ 1.3 ns - Light scattering + dispersion in sea water   ~ 1.5 ns at 40 m Angular resolution  0.3 o (for E > 10 TeV ) Including the acoustic position resolution and the -µ angle Time difference between the LED OB and an OM  = 0.4 ns 27 M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010

The biggest challenge is to determine the separate contribution of absorption and scattering 28 M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010

  PMT Has to be known to compute reconstruction efficiencies and effective areas Detailed GEANT4 simulation of the OM LED Measurements were performed in a water tank Photon scattering affects the measurements angular acceptance determination is not reliable at large  PMT Dedicated measurements of the photocathode surface of OMs  Angular acceptance uncertainty at large  affects  flux significantly, but not flux 29 M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010

40 K 40 Ca  e - (  decay)  Cherenkov Gaussian peak on coincidence plot Peak offset Integral under peak = rate of correlated coincidences High precision (~5%) monitoring of OM efficiencies Cross check of time calibration No dependence on bioluminescent activity has been observed Heide Costantini – INFN Genova RICH2010, 3 rd May M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010

Resolution better than 10 cm Acoustic transceiver Acoustic transceiver hydrophone Hydrophone position relative to line base location (20 days) THE ANTARES DETECTOR POSITIONING SYSTEM 31 REAL TIME POSITIONING  Acoustic positioning system + set of tiltmeters and compasses. Transceivers (RxTx) on the bottom of the lines, 4 autonomous transponders around the apparatus. 5 hydrophones (Rx) per line at specific heights. Tiltmeter and compass per storey, sound velocimeters (various depths). RECONSTRUCTION OF THE LINE SHAPE  GLOBAL  2 FIT TO LINE SHAPE MODEL (BEHAVIOUR OF LINE: SEA CURRENT) 31 M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010