Introduction to Fluid Mechanics

Slides:



Advertisements
Similar presentations
Navier-Stokes.
Advertisements

Equations of Continuity
1 MECH 221 FLUID MECHANICS (Fall 06/07) Tutorial 7.
Chapter 2 Reynolds Transport Theorem (RTT) 2.1 The Reynolds Transport Theorem 2.2 Continuity Equation 2.3 The Linear Momentum Equation 2.4 Conservation.
Experimental Thermo and Fluid Mechanics Lab. 4. Fluid Kinematics 4.1. Velocity Field 4.2. Continuity Equation.
1 MECH 221 FLUID MECHANICS (Fall 06/07) Tutorial 6 FLUID KINETMATICS.
Momentum flux across the sea surface
An Introduction to Stress and Strain
Introduction to Fluid Mechanics
MECH 221 FLUID MECHANICS (Fall 06/07) Chapter 3: FLUID IN MOTIONS
ME 231 Thermofluid Mechanics I Navier-Stokes Equations.
Chapter 9: Differential Analysis of Fluid Flow
Introduction to Fluid Mechanics
© Fox, McDonald & Pritchard Introduction to Fluid Mechanics Chapter 5 Introduction to Differential Analysis of Fluid Motion.
Copyright Kaplan AEC Education, 2005 Dynamics Outline Overview DYNAMICS, p. 193 KINEMATICS OF A PARTICLE, p. 194 Relating Distance, Velocity and the Tangential.
Chapter 9: Differential Analysis of Fluid Flow SCHOOL OF BIOPROCESS ENGINEERING, UNIVERSITI MALAYSIA PERLIS.
Introduction to Fluid Mechanics
PTT 204/3 APPLIED FLUID MECHANICS SEM 2 (2012/2013)
Flow inside turbomachines
Chapter 9: Differential Analysis of Fluid Flow
CHAPTER (III) KINEMATICS OF FLUID FLOW 3.1: Types of Fluid Flow : Real - or - Ideal fluid : Laminar - or - Turbulent Flows : Steady -
Kinematics of Flow. Fluid Kinematics  Fluid motion -Types of fluid - Velocity and acceleration - Continuity equation  Potential Flows -Velocity Potential.
Conservation of mass If we imagine a volume of fluid in a basin, we can make a statement about the change in mass that might occur if we add or remove.
Fluid Mechanics and Fluid Dynamics Fluid mechanics is the branch of physics that studies fluids (liquids, gases, and plasmas) and the forces on them. Fluid.
Reynolds Transport Theorem We need to relate time derivative of a property of a system to rate of change of that property within a certain region (C.V.)
© Fox, Pritchard, & McDonald Introduction to Fluid Mechanics Chapter 7 Dimensional Analysis and Similitude.
Basic Fluid Properties and Governing Equations  Density (  ): mass per unit volume (kg/m 3 or slug/ft 3 )  Specific Volume (v=1/  ): volume per unit.
اگر حجم کنترل در حال حرکت بود چه سرعتی در فرمول؟ + –
Introduction to Fluid Mechanics
Introduction to Fluid Mechanics
1 MECH 221 FLUID MECHANICS (Fall 06/07) Tutorial 5.
1 Chapter 6 Flow Analysis Using Differential Methods ( Differential Analysis of Fluid Flow)
Abj 4.2.2: Pressure, Pressure Force, and Fluid Motion Without Flow [Q2 and Q3] Area as A Vector Component of Area Vector – Projected Area Net Area.
© Fox, Pritchard, & McDonald Introduction to Fluid Mechanics Chapter 5 Introduction to Differential Analysis of Fluid Motion.
Pharos University ME 253 Fluid Mechanics II
Pharos University ME 253 Fluid Mechanics 2
Introduction to Fluid Mechanics
Introduction to Fluid Mechanics
CP502 Advanced Fluid Mechanics
© Fox, McDonald & Pritchard Introduction to Fluid Mechanics Chapter 6 Incompressible Inviscid Flow.
Differential Analysis of Fluid Flow. Navier-Stokes equations Example: incompressible Navier-Stokes equations.
ENT 257/4 FLUID MECHANICS Prof. Madya Dr. Ghulam Abdul Quadir School of Mechatronic Engineering H/P:
CP502 Advanced Fluid Mechanics
Differential Equation: Conservation of Momentum { } = { } + { } Sum of the External Forces Net Rate of Linear Momentum Efflux Accumulation of Linear Momentum.
Physics 111 Lecture Summaries (Serway 8 th Edition): Lecture 1Chapter 1&3Measurement & Vectors Lecture 2 Chapter 2Motion in 1 Dimension (Kinematics) Lecture.
Fluid Mechanics (C.V. analysis) Dept. of Experimental Orthopaedics and Biomechanics Bioengineering Reza Abedian (M.Sc.)
Computer Animation Rick Parent Computer Animation Algorithms and Techniques Computational Fluid Dynamics.
Motion of a Fluid Particle (Kinematics)
Chapter 4 Fluid Mechanics Frank White
DIFFERENTIAL EQUATIONS FOR FLUID FLOW Vinay Chandwani (Mtech Struct.)
Chapter 9: Differential Analysis of Fluid Flow
Today’s Lecture Objectives:
Lecture 16 Newton Mechanics Inertial properties,Generalized Coordinates Ruzena Bajcsy EE
The Bernoulli Equation
Introduction to Fluid Mechanics
Fluid Mechanics Dr. Mohsin Siddique Assistant Professor
MAE 5130: VISCOUS FLOWS Examples Utilizing The Navier-Stokes Equations
MAE 1202: AEROSPACE PRACTICUM
INFINITESIMALLY SMALL DIFFERENTIAL CUBE IN SPACE
Fluid is contained between two parallel
Topic 6 FluidFlowEquations_Introduction
Lecture no 13 &14 Kinetics & kinematics of fluid flow
Overview of Fluid Mechanics
FLUID MECHANICS REVIEW
Topic 5 NavierStokes Equations
Topic 6 NavierStokes Equations
5. Describing Flow CH EN 374: Fluid Mechanics.
Richard B. Rood (Room 2525, SRB) University of Michigan
Introduction to Fluid Mechanics
Introduction to Fluid Mechanics
Presentation transcript:

Introduction to Fluid Mechanics Chapter 5 Introduction to Differential Analysis of Fluid Motion

Main Topics قانون بقای جرم تابع جریان برای جریان دو بعدی تراکم ناپذیر سینماتیک معادله مومنتوم

قانون بقای جرم: Basic Law for a System

Conservation of Mass Differential CV and Taylor series Infinitesimal control volume of dimensions dx, dy, dz Area of right face = dy dz Mass flow rate through the right face of the control volume

Net mass flow rate into CV: Net mass flow rate out of CV:

Or, if we apply the definition of the divergence of a vector After substitution, Dividing through by volume dxdydz Or, if we apply the definition of the divergence of a vector

Conservation of Mass Rectangular Coordinate System

Conservation of Mass Rectangular Coordinate System “Del” Operator

Conservation of Mass Rectangular Coordinate System

Conservation of Mass Cylindrical coordinates

Conservation of Mass Special Cases Steady compressible flow Cartesian Cylindrical

Conservation of Mass Rectangular Coordinate System Incompressible Fluid: Steady Flow:

EXE :A two-dimensional converging duct is being designed for a high-speed wind tunnel. The bottom wall of the duct is to be flat and horizontal, and the top wall is to be curved in such a way that the axial wind speed u increases approximately linearly from u1 " 100 m/s at section (1) to u2 " 300 m/s at section (2) .Meanwhile, the air density ρ is to decrease approximately linearly from ρ1 " 1.2 kg/m3 TO ρ2 " 0.85 .The converging duct is 2.0 m long and is 2.0 m high at section (1). (a) Predict the y-component of velocity, v(x, y), in the duct. (b) Plot the approximate shape of the duct, ignoring friction on the walls. (c) How high should the duct be at section (2), the exit of the duct?

EXE 2:

Conservation of Mass Cylindrical Coordinate System

Conservation of Mass Cylindrical Coordinate System

Conservation of Mass Cylindrical Coordinate System “Del” Operator

Conservation of Mass Cylindrical Coordinate System

Conservation of Mass Cylindrical Coordinate System Incompressible Fluid: Steady Flow:

تابع جریان برای جریان تراکم ناپذیر 2 بعدی Two-Dimensional Flow یاد آوری خطوط جریان دو مولفه سرعت را ببریم در دل مفهوم ψ Stream Function y  

به درد به دست آوردن دبی حجمی   در طول خط جریان تابع ψ در طول خط جریان ثابت است Hence we can specify individual streamlines by their stream function values: ψ 5 0, 1, 2, etc. What is the significance of the ψ values? به درد به دست آوردن دبی حجمی

the flow rate across AB is

Stream Function for Two-Dimensional Incompressible Flow Cylindrical Coordinates Stream Function y(r,q)

Motion of a Fluid Particle (Kinematics) Fluid Translation: Acceleration of a Fluid Particle in a Velocity Field Fluid Rotation Fluid Deformation Angular Deformation Linear Deformation

کدام یک از حرکت ها تولید تنش برشی میکند؟

y t1 t0 particle path x

Fluid Translation: Acceleration of a Fluid Particle in a Velocity Field مشتق اصلی یا مشتق مادی

شتاب جابه جایی شتاب محلی

Motion of a Fluid Particle (Kinematics) Fluid Translation: Acceleration of a Fluid Particle in a Velocity Field

Fluid Translation: Acceleration of a Fluid Particle in a Velocity Field (Cylindrical)

چرخش سیال Fluid Rotation کی چرخش داریم؟ u3(x1) u1(x3) کی چرخش داریم؟ باید گشتاور داشته باشیم. نیروهای عمود بر سطح باعث شتاب و تغییر شکل طولی میشن و گشتاور ایجاد نمیکنند. نیروها وتنشهای برشی لازمه که فقط برای جریان ویسکوز معنی میده x1

Rotation Definition of rotation b Time = t + dt Time=t y Dy a Dx x Concept of rotation: Because of shear in the fluid, during flow, an element may not only get translated, but also ‘rotated’. The rotation is given by the definition in this page. Dx x Assume Vy|x < Vy|x+Dx and Vx|y > Vx|y+Dy

Fluid Rotation

Ψ=0 if x=0 , 180 or r=R

Motion of a Fluid Particle (Kinematics) Fluid Deformation: Angular Deformation

Motion of a Fluid Particle (Kinematics) Fluid Deformation: Angular Deformation

Motion of a Fluid Particle (Kinematics) Fluid Deformation: Linear Deformation

Momentum Equation Newton’s Second Law

Momentum Equation Forces Acting on a Fluid Particle

Momentum Equation Forces Acting on a Fluid Particle

Momentum Equation Differential Momentum Equation

Momentum Equation Newtonian Fluid: Navier-Stokes Equations

Momentum Equation Special Case: Euler’s Equation

Computational Fluid Dynamics Some Applications

Computational Fluid Dynamics Discretization