Particle Swarm optimisation 2002-04- 24 e.com Particle Swarm optimisation: A mini tutorial.

Slides:



Advertisements
Similar presentations
Particle Swarm Optimization (PSO)
Advertisements

Particle Swarm optimisation. These slides adapted from a presentation by - one of main researchers.
Particle Swarm Optimization
Particle Swarm Optimization (PSO)  Kennedy, J., Eberhart, R. C. (1995). Particle swarm optimization. Proc. IEEE International Conference.
PARTICLE SWARM OPTIMISATION (PSO) Perry Brown Alexander Mathews Image:
Particle Swarm Optimization PSO was first introduced by Jammes Kennedy and Russell C. Eberhart in Fundamental hypothesis: social sharing of information.
Particle Swarm Optimization (PSO)
Particle Swarm Optimization Particle Swarm Optimization (PSO) applies to concept of social interaction to problem solving. It was developed in 1995 by.
Particle Swarm Optimization A/Prof. Xiaodong Li School of Computer Science and IT, RMIT University Melbourne, Australia
EMBIO – Cambridge Particle Swarm Optimization applied to Automated Docking Automated docking of a ligand to a macromolecule Particle Swarm Optimization.
Department of Engineering, Control & Instrumentation Research Group 22 – Mar – 2006 Optimisation Based Clearance of Nonlinear Flight Control Laws Prathyush.
Genetic Algorithms in Materials Processing N. Chakraborti Department of Metallurgical & Materials Engineering Indian Institute of Technology Kharagpur.
Hypercubes and Neural Networks bill wolfe 10/23/2005.
Stochastic greedy local search Chapter 7 ICS-275 Spring 2007.
1 PSO-based Motion Fuzzy Controller Design for Mobile Robots Master : Juing-Shian Chiou Student : Yu-Chia Hu( 胡育嘉 ) PPT : 100% 製作 International Journal.
Particle Swarm Optimization Algorithms
CSM6120 Introduction to Intelligent Systems Other evolutionary algorithms.
Genetic Algorithms and Ant Colony Optimisation
Panida Boonyaritdachochai
Swarm Intelligence 虞台文.
Global Optimization Techniques in Computational Electromagnetics Zbyněk Raida Dept. of Radio Electronics Brno University of Technology Brno, Czechia.
PSO and its variants Swarm Intelligence Group Peking University.
(Particle Swarm Optimisation)
The Particle Swarm Optimization Algorithm Nebojša Trpković 10 th Dec 2010.
1 IE 607 Heuristic Optimization Particle Swarm Optimization.
Topics in Artificial Intelligence By Danny Kovach.
Particle Swarm optimisation. These slides adapted from a presentation by - one of main researchers.
Neural and Evolutionary Computing - Lecture 11 1 Nature inspired metaheuristics  Metaheuristics  Swarm Intelligence  Ant Colony Optimization  Particle.
Particle Swarm Optimization Speaker: Lin, Wei-Kai
Texas A&M University-Corpus Christi  Division of Near Shore Research Present Trends in the Application of Artificial Intelligence to Environmental Systems.
Solving of Graph Coloring Problem with Particle Swarm Optimization Amin Fazel Sharif University of Technology Caro Lucas February 2005 Computer Engineering.
Controlling the Behavior of Swarm Systems Zachary Kurtz CMSC 601, 5/4/
Particle Swarm Optimization James Kennedy & Russel C. Eberhart.
Particle Swarm Optimization by Dr. Shubhajit Roy Chowdhury Centre for VLSI and Embedded Systems Technology, IIIT Hyderabad.
Stochastic greedy local search Chapter 7 ICS-275 Spring 2009.
Particle Swarm Optimization † Spencer Vogel † This presentation contains cheesy graphics and animations and they will be awesome.
Particle Swarm Optimization † Spencer Vogel † This presentation contains cheesy graphics and animations and they will be awesome.
CITS7212: Computational Intelligence An Overview of Core CI Technologies Lyndon While.
Particle Swarm Optimization Using the HP Prime Presented by Namir Shammas 1.
Faculty of Information Engineering, Shenzhen University Liao Huilian SZU TI-DSPs LAB Aug 27, 2007 Optimizer based on particle swarm optimization and LBG.
Particle Swarm Optimization (PSO)
An Improved Quantum-behaved Particle Swarm Optimization Algorithm Based on Culture V i   v i 1, v i 2,.. v iD  Gao X. Z 2, Wu Ying 1, Huang Xianlin.
Application Development in Engineering Optimization with Matlab and External Solvers Aalto University School of Engineering.
Selection and Recombination Temi avanzati di Intelligenza Artificiale - Lecture 4 Prof. Vincenzo Cutello Department of Mathematics and Computer Science.
On the Computation of All Global Minimizers Through Particle Swarm Optimization IEEE Transactions On Evolutionary Computation, Vol. 8, No.3, June 2004.
Particle Swarm Optimization (PSO) Algorithm. Swarming – The Definition aggregation of similar animals, generally cruising in the same directionaggregation.
 Introduction  Particle swarm optimization  PSO algorithm  PSO solution update in 2-D  Example.
Swarm Intelligence. Content Overview Swarm Particle Optimization (PSO) – Example Ant Colony Optimization (ACO)
Stut 11 Robot Path Planning in Unknown Environments Using Particle Swarm Optimization Leandro dos Santos Coelho and Viviana Cocco Mariani.
The 2st Chinese Workshop on Evolutionary Computation and Learning
A Novel Set-Based Particle Swarm Optimization Method for Discrete Optimization Problems Wei-Neng Chen, Student Member, IEEE, Jun Zhang, Senior Member,
Particle Swarm optimisation
Particle Swarm optimisation
AEEICB-2016 PAPER ID- 187 Voltage Stability Enhancement and Voltage Deviation Minimization Using Ant-Lion Optimizer Algorithm Indrajit N. Trivedi 1 Siddharth.
Particle Swarm Optimization
PSO -Introduction Proposed by James Kennedy & Russell Eberhart in 1995
Particle Swarm optimisation: A mini tutorial
Dr. Ashraf Abdelbar American University in Cairo
CS Multimedia Software Engineering
Meta-heuristics Introduction - Fabien Tricoire
آموزش شبکه عصبی با استفاده از روش بهینه سازی PSO
Probability-based Evolutionary Algorithms
Multi-objective Optimization Using Particle Swarm Optimization
Clustering (3) Center-based algorithms Fuzzy k-means
metaheuristic methods and their applications
الگوریتم بهینه سازی توده ذرات Particle Swarm Optimization
بهينه‌سازي گروه ذرات (PSO)
Metaheuristic methods and their applications. Optimization Problems Strategies for Solving NP-hard Optimization Problems What is a Metaheuristic Method?
现代智能优化算法-粒子群算法 华北电力大学输配电系统研究所 刘自发 2008年3月 1/18/2019
Flocking and Particle Swarm Optimization
Presentation transcript:

Particle Swarm optimisation e.com Particle Swarm optimisation: A mini tutorial

Particle Swarm optimisation e.com The “inventors” (1) Russell Eberhart

Particle Swarm optimisation e.com The “inventors” (2) James Kennedy

Particle Swarm optimisation e.com Part 1: United we stand

Particle Swarm optimisation e.com Cooperation example

Particle Swarm optimisation e.com Initialization. Positions and velocities

Particle Swarm optimisation e.com Neighbourhoods geograph ical social

Particle Swarm optimisation e.com The circular neighbourhood Virtual circle Particle 1’s 3- neighbourho od

Particle Swarm optimisation e.com Psychosocial compromise Here I am! The best perf. of my neighbours My best perf. x pgpg pipi v i-proximity g-proximity

Particle Swarm optimisation e.com The historical algorithm for each particle update the velocity then move for each component d At each time step t Randomn ess inside the loop

Particle Swarm optimisation e.com Random proximity x pgpg pipi v i-proximity g-proximity Hyperparallelepiped => Biased

Particle Swarm optimisation e.com Animated illustration Global optimu m

Particle Swarm optimisation e.com Part 2: How to choose parameters The right way This way Or this way

Particle Swarm optimisation e.com Type 1” form with Usual values:  =1  =4.1 =>  =0.73 swarm size=20 hood size=3 Non divergence criterion Global constriction coefficient

Particle Swarm optimisation e.com 5D complex space } } Convergence Non diverge nce A 3D section  Re(y) Re(v)

Particle Swarm optimisation e.com Move in a 2D section (attractor)

Particle Swarm optimisation e.com Some functions... Rosenbrock Griewank Rastrigin

Particle Swarm optimisation e.com... and some results Optimum=0, dimension=30 Best result after evaluations

Particle Swarm optimisation e.com Beat the swarm! Your current position Your best perf. Best perf. of the swarm

Particle Swarm optimisation e.com Part 3: Beyond real numbers Bingo!

Particle Swarm optimisation e.com Minimun requirements Comparing positions in the search space H Algebraic operators

Particle Swarm optimisation e.com velocity = pos_minus_pos(position 1, position 2 ) velocity = linear_combin( ,velocity 1, ,velocity 2 ) position = pos_plus_vel(position, velocity) (position,velocity) = confinement(position t+1,position t ) Pseudo code form } algebra ic operat ors =>

Particle Swarm optimisation e.com Fifty-fifty N=100, D=20. Search space: [1,N] D 105 evaluations: = (=450) granularity=1

Particle Swarm optimisation e.com Knapsack N=100, D=10, S=100, 870 evaluations: run 1 => (9, 14, 18, 1, 16, 5, 6, 2, 12, 17) run 2 => (29, 3, 16, 4, 1, 2, 6, 8, 26, 5) granularity=1

Particle Swarm optimisation e.com Graph Coloring Problem = pos - plus - vel

Particle Swarm optimisation e.com The Tireless Traveller Example of position: X=(5,3,4,1,2,6) Example of velocity: v=((5,3),(2,5),(3,1))

Particle Swarm optimisation e.com n1n1 n3n3 n2n2 Apple trees Swarm size=3 Best position

Particle Swarm optimisation e.com Part 4: Some variants

Particle Swarm optimisation e.com Unbiased random proximity x pgpg pipi v i-proximity g-proximity Hyperparallelepiped => Biased Dimension Volume Hypersphere vs hypercube

Particle Swarm optimisation e.com Clusters and queens Each particle is weighted by its perf. Dynamic clustering Centroids = queens = temporary new “particles”

Particle Swarm optimisation e.com Think locally, act locally (Adaptive versions)

Particle Swarm optimisation e.com Adaptive swarm size There has been enough improvement but there has been not enough improvement although I'm the worst I'm the best I try to kill myself I try to generate a new particle

Particle Swarm optimisation e.com Adaptive coefficients The better I am, the more I follow my own way The better is my best neighbour, the more I tend to go towards him vv rand(0… b )(p-x)

Particle Swarm optimisation e.com Energies: classical process Rosenbrock 2D. Swarm size=20, constant coefficients

Particle Swarm optimisation e.com Energies: adaptive process Rosenbrock 2D. Adaptive swarm size, adaptive coefficients

Particle Swarm optimisation e.com Part 5: Real applications (hybrid) Medical diagnosis Industrial mixer Electrical generatorElectrical vehicle

Particle Swarm optimisation e.com Real applications (stand alone) Cockshott A. R., Hartman B. E., "Improving the fermentation medium for Echinocandin B production. Part II: Particle swarm optimization", Process biochemistry, vol. 36, 2001, p He Z., Wei C., Yang L., Gao X., Yao S., Eberhart R. C., Shi Y., "Extracting Rules from Fuzzy Neural Network by Particle Swarm Optimization", IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, USA, Secrest B. R., Traveling Salesman Problem for Surveillance Mission using Particle Swarm Optimization, AFIT/GCE/ENG/01M-03, Air Force Institute of Technology, Yoshida H., Kawata K., Fukuyama Y., "A Particle Swarm Optimization for Reactive Power and Voltage Control considering Voltage Security Assessment", IEEE Trans. on Power Systems, vol. 15, 2001, p

Particle Swarm optimisation e.com To know more Clerc M., Kennedy J., "The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Somplex space", IEEE Transaction on Evolutionary Computation, 2002,vol. 6, p Clerc M., "L'optimisation par essaim particulaire. Principes et pratique", Hermès, Techniques et Science de l'Informatique, Particle Swarm Central, THE site: Self advert

Particle Swarm optimisation e.com Appendix

Particle Swarm optimisation e.com Canonical form    M Eigen values e 1 and e 2

Particle Swarm optimisation e.com Constriction Constriction coefficients

Particle Swarm optimisation e.com Convergence criterion 

Particle Swarm optimisation e.com Magic Square (1)

Particle Swarm optimisation e.com Magic Square (2) D=3x3, N= runs evaluations 10 solutions

Particle Swarm optimisation e.com Non linear system Search space [0,1] 2 1 run 143 evaluations 1 solution 10 runs 1430 evaluations 3 solutions

Particle Swarm optimisation e.com