Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto

Slides:



Advertisements
Similar presentations
Observational constraints on primordial perturbations Antony Lewis CITA, Toronto
Advertisements

Cosmological Parameters and the WMAP data Antony Lewis CfA, Harvard / CITA, Toronto Standard assumptions – what are the parameters?
Abstract Observed CMB polarization maps can be split into gradient-like (E) and curl- like (B) modes. I review the details of this decomposition, and the.
Observational constraints and cosmological parameters
Power spectrum of the dark ages Antony Lewis Institute of Astronomy, Cambridge Work with Anthony Challinor (IoA, DAMTP); astro-ph/
Future 21cm surveys and non-Gaussianity Antony Lewis Institute of Astronomy, Cambridge work with Anthony Challinor & Richard Shaw.
CMB and cluster lensing Antony Lewis Institute of Astronomy, Cambridge Lewis & Challinor, Phys. Rept : astro-ph/
Lensing of the CMB Antony Lewis Institute of Astronomy, Cambridge Review ref: Lewis, Challinor, Phys. Rep: astro-ph/
Weak Lensing of the CMB Antony Lewis Institute of Astronomy, Cambridge
Cosmic Microwave Background Theory Antony Lewis CITA, University of Toronto
Institute of Astronomy, Cambridge
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
CMB Constraints on Cosmology Antony Lewis Institute of Astronomy, Cambridge
Constraining Inflation Histories with the CMB & Large Scale Structure Dynamical & Resolution Trajectories for Inflation then & now Dick Bond.
Planck 2013 results, implications for cosmology
Systematic effects in cosmic microwave background polarization and power spectrum estimation SKA 2010 Postgraduate Bursary Conference, Stellenbosch Institute.
Phenomenological Classification of Inflationary Potentials Katie Mack (Princeton University) with George Efstathiou (Cambridge University) Efstathiou &
COSMOLOGY AS A TOOL FOR PARTICLE PHYSICS Roberto Trotta University of Oxford Astrophysics & Royal Astronomical Society.
Curvature Perturbations from a Non-minimally Coupled Vector Boson Field Mindaugas Karčiauskas work done with Konstantinos Dimopoulos Mindaugas Karčiauskas.
The Curvature Perturbation from Vector Fields: the Vector Curvaton Case Mindaugas Karčiauskas Dimopoulos, Karčiauskas, Lyth, Rodriguez, JCAP 13 (2009)
The Statistically Anisotropic Curvature Perturbation from Vector Fields Mindaugas Karčiauskas Dimopoulos, MK, JHEP 07 (2008) Dimopoulos, MK, Lyth, Rodriguez,
CMB as a physics laboratory
Constraints on the Primordial Magnetic Field and Neutrino Mass from the CMB Polarization and Power Spectra G. J. Mathews - University of Notre Dame D..
The Statistically Anisotropic Curvature Perturbation from Vector Fields Mindaugas Karčiauskas Dimopoulos, Karčiauskas, JHEP 07, 119 (2008) Dimopoulos,
Primordial density perturbations from the vector fields Mindaugas Karčiauskas in collaboration with Konstantinos Dimopoulos Jacques M. Wagstaff Mindaugas.
The Implication of BICEP2 : Alternative Interpretations on its results Seokcheon Lee SNU Seminar Apr. 10 th
Cosmology, University of Bologna – May Cosmology: Polarization of the Cosmic Microwave Background Steven T. Myers University of Bologna and the.
Trispectrum Estimator of Primordial Perturbation in Equilateral Type Non-Gaussian Models Keisuke Izumi (泉 圭介) Collaboration with Shuntaro Mizuno Kazuya.
Yoshiharu Tanaka (YITP) Gradient expansion approach to nonlinear superhorizon perturbations Finnish-Japanese Workshop on Particle Helsinki,
Juan Carlos Bueno Sánchez Universidad del Valle (Santiago de Cali), Universidad Antonio Nariño (Bogotá), Universidad Industrial de Santander (Bucaramanga)
Cosmic Microwave Background  Cosmological Overview/Definitions  Temperature  Polarization  Ramifications  Cosmological Overview/Definitions  Temperature.
US Planck Data Analysis Review 1 Lloyd KnoxUS Planck Data Analysis Review 9–10 May 2006 The Science Potential of Planck Lloyd Knox (UC Davis)
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
27 th May 2009, School of Astrophysics, Bertinoro Daniela Paoletti University and INFN of Ferrara INAF/IASF-Bologna Work in collaboration with Fabio Finelli.
Probing fundamental physics with CMB B-modes Cora Dvorkin IAS Harvard (Hubble fellow) Status and Future of Inflationary Theory workshop August 2014, KICP.
Cosmology : Cosmic Microwave Background & Large scale structure & Large scale structure Cosmology : Cosmic Microwave Background & Large scale structure.
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
Exotic Physics in the Dark Ages Katie Mack Institute of Astronomy / Kavli Institute for Cosmology, University of Cambridge.
Probing inflation with CMB anisotropies Zong-Kuan Guo (ITP, CAS) ICFPC 2012 (Weihai) August 12, 2012.
Weak lensing generated by vector perturbations and detectability of cosmic strings Daisuke Yamauchi ICRR, U. Tokyo 2012/9/13 China DY,
Observational constraints and cosmological parameters Antony Lewis Institute of Astronomy, Cambridge
the National Radio Astronomy Observatory – Socorro, NM
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Daisuke Yamauchi ICRR, U Tokyo Weak lensing of CMB from cosmic (super-)strings 9/28/2011 Tohoku U with A. Taruya (U Tokyo, RESCEU), T. Namikawa.
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
Cosmology. Where are we ? Cosmology CMB CMB P.Natoli 2009 Planck.
Observational constraints on inflationary models Zong-Kuan Guo (ITP, CAS) CosPA2011 (Peking Uni) October 31, 2011.
Three theoretical issues in physical cosmology I. Nonlinear clustering II. Dark matter III. Dark energy J. Hwang (KNU), H. Noh (KASI)
The Cosmic Microwave Background
Remote Quadrupole Measurements from Reionization Gil Holder Collaborators: Jon Dudley; Alex van Engelen (McGill) Ilian Iliev (CITA/Zurich); Olivier Dore.
CMB, lensing, and non-Gaussianities
Cheng Zhao Supervisor: Charling Tao
BICEP2 Results & Its Implication on inflation models and Cosmology Seokcheon Lee 48 th Workshop on Gravitation & NR May. 16 th
Theory and observations
Understanding the CMB Neutrino Isocurvature modes S. MUYA KASANDA School of Mathematical Sciences University of KwaZulu-Natal Supervisor: Dr K. Moodley.
Sam Young University of Sussex arXiv: , SY, Christian Byrnes Texas Symposium, 16 th December 2015 CONDITIONS FOR THE FORMATION OF PRIMORDIAL BLACK.
Precision cosmology, status and perspectives Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 FA-51 Meeting Frascati, June 22nd 2010.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
Testing Primordial non-Gaussianities in CMB Anisotropies
Recent status of dark energy and beyond
Cosmic Inflation and Quantum Mechanics I: Concepts
Inflation with a Gauss-Bonnet coupling
Physics Seminar Measurement of the Cosmic Microwave Background anisotropies and polarization with Planck Assoc. Prof. Guillaume Patanchon Astroparticle.
Shintaro Nakamura (Tokyo University of Science)
A Measurement of CMB Polarization with QUaD
Precision cosmology, status and perspectives
Abstract Observed CMB polarization maps can be split into gradient-like (E) and curl-like (B) modes. I review the details of this decomposition, and the.
General, single field Inflation
Measurements of Cosmological Parameters
“B-mode from space” workshop,
Presentation transcript:

Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto

Hu & White, Sci. Am., (2004) Evolution of the universe Opaque Transparent

Perturbation evolution Early universe to last scattering

Contributions to cosmology Constraints on primordial perturbations Observable primordial isocurvature and vector modes (identification and predictions) CMB polarization analysis: solution to E/B mode separation problem Simulation and parameter estimation with CMB lensing Ab initio quantum gravity calculation of primordial perturbations and CMB in closed instanton model Fastest and most accurate code for calculating CMB anisotropy power spectra from initial conditions + parameters (CAMB) Methods for fast Monte Carlo parameter estimation from cosmological data (CosmoMC code) Accurate parameter constraints from CMB + other data (e.g. galaxy lensing) Evolution of dark matter and dark energy perturbations: efficient methods, numerical predictions, parameter constraints CMB signatures of primordial magnetic fields

Redhead et al: astro-ph/ CMB temperature power spectrum Primordial perturbations + later physics

Primordial Perturbations fluid at redshift < 10 9 Photons Neutrinos Baryons + electrons Cold Dark Matter Dark energy probably negligible early on

General regular perturbation Scalar Adiabatic (observed) Matter density Cancelling matter density (unobservable) Neutrino density (contrived) Neutrino velocity (very contrived) Vector Neutrino vorticity (very contrived) Tensor Gravitational waves + irregular modes, neutrino n-pole modes, n-Tensor modes Rebhan and Schwarz: gr-qc/ other possible components, e.g. defects, magnetic fields, exotic stuff… General regular linear primordial perturbation -isocurvature-

Bridle, Lewis, Weller, Efstathiou: astro-ph/ Adiabatic modes What is the primordial power spectrum? Isocurvature modes Curvaton model? Gordon, Lewis: astro-ph/

Primordial Gravitational Waves (tensor modes) Well motivated by some inflationary models - Amplitude measures inflaton potential at horizon crossing - distinguish models of inflation Observation would rule out other models - ekpyrotic scenario predicts exponentially small amplitude - small also in many models of inflation, esp. two field e.g. curvaton Weakly constrained from CMB temperature anisotropy Look at CMB polarization

E and B polarization E polarization from scalar, vector and tensor modes B polarization only from vector and tensor modes B is smoking gun for primordial vector and tensor modes

Vector and Tensor B mode spectrum Lewis: astro-ph/ B-modes Non-linear scalar modes also give small B signal

Polarization complications E/B mixing Lensing of the CMB

Underlying B-modesPart-sky mix with scalar E Recovered B modes map of gravity waves Separation method Observation Lewis: astro-ph/ E/B mixing and solution

Weak lensing of the CMB Last scattering surface Inhomogeneous universe - photons deflected Observer Lensing B-modes Changed power spectra Lewis: PRD submitted; Challinor, Lewis: in preparation

Future work Cosmological parameters from forthcoming CMB data (Planck, Clover, etc.) + galaxy lensing etc. Reconstruction of initial power spectrum and constraints on inflation and other models Improved treatment of CMB lensing: lensing reconstruction, B-mode cleaning, un-lensing the temperature Statistical methods: Monte Carlo methods for CMB map-making, polarization analysis and weak lensing Cosmology from 21cm and galaxy weak lensing (+CMB) Tests of new physics, string theory, etc; early universe models New things…

CMB data alone color = optical depth Samples in 6D parameter space Parameter estimation: sampling from P(parameters|data)

e.g. CMB+galaxy lensing +BBN prior Plot number density of samples as function of parameters CosmoMC code at Lewis, Bridle: astro-ph/ http://cosmologist.info/cosmomc Contaldi, Hoekstra, Lewis: astro-ph/

Conclusions CMB contains lots of useful information! - primordial perturbations + well understood physics (cosmological parameters) Precision cosmology - sampling methods used to constrain many parameters with full posterior distribution Currently no evidence for any deviations from standard near scale-invariant purely adiabatic primordial spectrum B-mode polarization - primordial gravitational waves + vector modes: - energy scale of inflation - rule out most ekpyrotic and pure curvaton/ inhomogeneous reheating models and others Weak lensing of CMB : - B-modes potentially confuse primordial signals - Have to account for effect on power spectra Foregrounds, systematics, etc, may make things much more complicated!