Chapter 4 Probability 4-1 Overview 4-2 Fundamentals 4-3 Addition Rule

Slides:



Advertisements
Similar presentations
Probability Unit 3.
Advertisements

Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 14 From Randomness to Probability.
Overview Fundamentals
Section 4-1 Review and Preview.
Lecture Slides Elementary Statistics Twelfth Edition
Probability Simple Events
Probability & Counting Rules Chapter 4 Created by Laura Ralston Revised by Brent Griffin.
Section 4-2 Statistics 300: Introduction to Probability and Statistics.
3.6: Probabilities Through Simulations Objective: To simulate probabilities using random number tables and random number generators CHS Statistics.
Overview Created by Tom Wegleitner, Centreville, Virginia
Probability Event a result or outcome of a procedure Simple Event an event that can’t be broken down Sample Space the set of all possible simple events.
Chapter 3 Probability 3-1 Overview 3-2 Fundamentals 3-3 Addition Rule
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 4-2.
Slide 1 Statistics Workshop Tutorial 4 Probability Probability Distributions.
8-2 Basics of Hypothesis Testing
4-2 Basic Concepts of Probability This section presents three approaches to finding the probability of an event. The most important objective of this section.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Section 4-2 Basic Concepts of Probability.
5.1 Probability of Simple Events
Copyright © 2015, 2011, 2008 Pearson Education, Inc. Chapter 7, Unit A, Slide 1 Probability: Living With The Odds 7.
Chapter 4 Probability Lecture 1 Sections: 4.1 – 4.2.
Lecture Slides Elementary Statistics Twelfth Edition
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Chapter 4 Probability 4-1 Overview 4-2 Fundamentals 4-3 Addition.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Chapter 4 Probability 4-1 Overview 4-2 Fundamentals 4-3 Addition Rule
Sections 4-1 and 4-2 Review and Preview and Fundamentals.
Chapter 5 Probability Distributions
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Basic Principle of Statistics: Rare Event Rule If, under a given assumption,
1 Chapter 3. Section 3-1 and 3-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
1 Chapter 3. Section 3-1 and 3-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
BIOSTATISTICS Topic: Probability 郭士逢 輔大生科系 2007 Note: These slides are made for teaching purpose only, with contents from the textbook, Biostatistics for.
1-1 Copyright © 2015, 2010, 2007 Pearson Education, Inc. Chapter 13, Slide 1 Chapter 13 From Randomness to Probability.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
1  Event - any collection of results or outcomes from some procedure  Simple event - any outcome or event that cannot be broken down into simpler components.
Probabilistic & Statistical Techniques Eng. Tamer Eshtawi First Semester Eng. Tamer Eshtawi First Semester
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Chapter 4 Probability 4-1 Review and Preview 4-2 Basic Concepts of Probability.
Sullivan – Fundamentals of Statistics – 2 nd Edition – Chapter 5 Section 1 – Slide 1 of 33 Chapter 5 Section 1 Probability Rules.
Probability The Basics – Section 4.2.
3.1 & 3.2: Fundamentals of Probability Objective: To understand and apply the basic probability rules and theorems CHS Statistics.
Slide Slide 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim about a Proportion 8-4 Testing a Claim About.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Preview Rare Event Rule for Inferential Statistics: If, under a given assumption, the probability.
LECTURE 15 THURSDAY, 15 OCTOBER STA 291 Fall
Chapter 4 Probability Lecture 1 Sections: 4.1 – 4.2.
16.1: Basic Probability. Definitions Probability experiment: An action through which specific results (counts, measurements, or responses) are obtained.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Slide Slide 1 Fundamentals of Probability. Slide Slide 2 A chance experiment is any activity or situation in which there is uncertainty about which of.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Slide 1 Lecture # 4&5 CHS 221 DR. Wajed Hatamleh.
Chapter 4 Probability 4-1 Review and Preview 4-2 Basic Concepts of Probability 4-3 Addition Rule 4-4 Multiplication Rule: Basics 4-5 Multiplication Rule:
Copyright © 2009 Pearson Education, Inc. Chapter 11 Understanding Randomness.
1 Copyright © 2014, 2012, 2009 Pearson Education, Inc. Chapter 9 Understanding Randomness.
Chapter 4 Probability and Counting Rules. Introduction “The only two sure things are death and taxes” A cynical person once said.
1 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman Probability Chapter 3 M A R I O F. T R I O L A Copyright © 1998, Triola, Elementary.
Fundamentals of Probability
Section 4-1 Review and Preview.
Probability The Basics – Section 4.2.
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Essentials of Statistics 5th Edition
Lecture Slides Elementary Statistics Twelfth Edition
Probability and Statistics Chapter 3 Notes
Overview and Basics of Hypothesis Testing
Lecture Slides Elementary Statistics Eleventh Edition
Elementary Statistics
Chapter 5 Probability.
Note: In this chapter, we only cover sections 4-1 through 4-3
Lecture Slides Essentials of Statistics 5th Edition
Presentation transcript:

Chapter 4 Probability 4-1 Overview 4-2 Fundamentals 4-3 Addition Rule 4-4 Multiplication Rule: Basics 4-5 Multiplication Rule: Complements and Conditional Probability 4-6 Probabilities Through Simulations 4-7 Counting

Section 4-1 Overview

Rare Event Rule for Inferential Statistics: Overview Rare Event Rule for Inferential Statistics: If, under a given assumption, the probability of a particular observed event is extremely small, we conclude that the assumption is probably not correct. Statisticians use the rare event rule for inferential statistics.

Example We have a gender selection procedure that claims to increase the birth of baby girls. Actual results out of 100 babies born: 98 girls, 2 boys. Is there a chance of getting boys? What’s the probability?

Section 4-2 Fundamentals

Key Concept This section introduces the basic concept of the probability of an event. Three different methods for finding probability values will be presented. The most important objective of this section is to learn how to interpret probability values.

Example We have a quality control test that shows that there are 5 defective printers and 15 that are “good.” What is the probability of choosing one that is not defective? What is the probability of choosing one that is defective?

Definitions Event any collection of results or outcomes of a procedure Simple Event an outcome or an event that cannot be further broken down into simpler components Sample Space for a procedure consists of all possible simple events; that is, the sample space consists of all outcomes that cannot be broken down any further

Example In the following display, we use f to denote a female baby and m to denote a male baby. Procedure Example of event Single birth female (simple event) 3 births 2 females and 1 male (not a simple event)

Example In the following display, we use f to denote a female baby and m to denote a male baby. Procedure Example of event Sample Space Single birth female {f, m} (simple event) 3 births 2 females and 1 male {fff, ffm, fmf, (not a simple event) fmm, mff, mfm, mmf, mmm}

P - denotes a probability. A, B, and C - denote specific events. Notation for Probabilities P - denotes a probability. A, B, and C - denote specific events. P (A) - denotes the probability of event A occurring.

Computing Probability Basic Rules for Computing Probability Rule 1: Relative Frequency Approximation of Probability Conduct (or observe) a procedure, and count the number of times event A actually occurs. Based on these actual results, P(A) is estimated as follows: P(A) = number of times A occurred number of times trial was repeated

Example Find the probability that NBA basketball player Reggie Miller makes a free throw after being fouled. At one point in his career, he made 5915 free throws in 6679 attempts (NBA data).

Activity Flip a penny 30 times. Record your results on the board for # of heads flipped. Let A = # of heads flipped. Trial # Heads Tails P(A) Plot your data (x-axis: trial number, y-axis: proportion) What do you notice about the graph?

Law of Large Numbers As a procedure is repeated again and again, the relative frequency probability (from Rule 1) of an event tends to approach the actual probability.

Computing Probability - cont number of different simple events Basic Rules for Computing Probability - cont Rule 2: Classical Approach to Probability (Requires Equally Likely Outcomes) Assume that a given procedure has n different simple events and that each of those simple events has an equal chance of occurring. If event A can occur in s of these n ways, then s P(A) = number of ways A can occur = n number of different simple events

Example If you have four kings from a deck, what’s the probability you’ll get a king of diamonds? If trying to determine P(2) with a fair and balanced die, each of the six faces has an equal chance of occurring. Find P(2). Find the probability that when a couple has 3 children, they will have exactly 2 boys. Assume that boys and girls are equally likely and that the gender of any child is not influenced by the gender of any other child.

Computing Probability - cont Basic Rules for Computing Probability - cont Rule 3: Subjective Probabilities P(A), the probability of event A, is estimated by using knowledge of the relevant circumstances.

Examples When trying to estimate the probability of rain tomorrow, meteorologists use their expert knowledge of weather conditions to develop an estimate of the probability. What is the probability that your car will be hit by a meteorite this year?

Probabilities/Outcomes that aren’t equally likely Is the probability that a Republican will win the next presidential election 1/2 ? In other words, is the probability that a Republican will win equal to the probability that a Democrat will win? Is there a ½ probability that you will pass your next statistics test?

Warning! When you know nothing about the likelihood of different possible outcomes, don’t assume they are equally likely!

Probability Limits The probability of an impossible event is 0. The probability of an event that is certain to occur is 1. For any event A, the probability of A is between 0 and 1 inclusive. That is, 0  P(A)  1.

Possible Values for Probabilities

Example If a year is selected at random, find the probability that Thanksgiving Day will be on a: Wednesday Thursday

Definition The complement of event A, denoted by A, consists of all outcomes in which the event A does not occur. Example: In reality, more boys are born than girls. In one typical group, there are 205 newborn babies, 105 of whom are boys. If one baby is randomly selected from the group, what is the probability that the baby is not a boy?

Rounding Off Probabilities When expressing the value of a probability, either give the exact fraction or decimal or round off final decimal results to three significant digits. (Suggestion: When the probability is not a simple fraction such as 2/3 or 5/9, express it as a decimal so that the number can be better understood.)

Definitions The actual odds against event A occurring are the ratio P(A)/P(A), usually expressed in the form of a:b (or “a to b”), where a and b are integers having no common factors. The actual odds in favor of event A occurring are the reciprocal of the actual odds against the event. If the odds against A are a:b, then the odds in favor of A are b:a. The payoff odds against event A represent the ratio of the net profit (if you win) to the amount bet. payoff odds against event A = (net profit) : (amount bet)

Odds! (Vegas, baby!) If you bet $5 on the number 13 in roulette, your probability of winning is 1/38 and the payoff odds are given by the casino as 35:1. Find the actual odds against the outcome of 13. How much net profit would you make if you win by betting on 13? If the casino were operating “just for the fun of it” (yeah, right), and the payoff odds were changed to match the actual odds against 13, how much would you win if the outcome were 13?

Recap In this section we have discussed: Rare event rule for inferential statistics. Probability rules. Law of large numbers. Complementary events. Rounding off probabilities. Odds.