Control of Magnetic Chaos & Self-Organization John Sarff for MST Group CMSO General Meeting Madison, WI August 4-6, 2004.

Slides:



Advertisements
Similar presentations
NSF Site Visit Madison, May 1-2, 2006 Magnetic Helicity Conservation and Transport R. Kulsrud and H. Ji for participants of the Center for Magnetic Self-organization.
Advertisements

Statistical Properties of Broadband Magnetic Turbulence in the Reversed Field Pinch John Sarff D. Craig, L. Frassinetti 1, L. Marrelli 1, P. Martin 1,
Experimental Measurements of Non- MHD Dynamo Effects Summarized by S.C. Prager.
Dynamo Effects in Laboratory Plasmas S.C. Prager University of Wisconsin October, 2003.
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI Hall Dynamo Get-together PPPL.
Magnetic Relaxation in MST S. Prager University of Wisconsin and CMSO.
Experimental tasks Spectra Extend to small scale; wavenumber dependence (Taylor hyp.); density, flow Verify existence of inertial range Determine if decorrelation.
Ion Heating Presented by Gennady Fiksel, UW-Madison for CMSO review panel May 1-2, 2006, Madison.
Outline: I. Introduction, background, and examples of momentum transport II. Momentum transport physics topics being addressed by CMSO - Physics, Plans,
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Outline: I. Introduction and examples of momentum transport II. Momentum transport physics topics being addressed by CMSO III. Selected highlights and.
Madison 2006 Dynamo Fausto Cattaneo ANL - University of Chicago Stewart Prager University of Wisconsin.
Ion Heating and Velocity Fluctuation Measurements in MST Sanjay Gangadhara, Darren Craig, David Ennis, Gennady Fiskel and the MST team University of Wisconsin-Madison.
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI CMSO Meeting Madison, WI August.
Experimental Tests of Two-Fluid Relaxation D. Craig and MST Team University of Wisconsin – Madison General Meeting of the Center for Magnetic Self-Organization.
Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart.
Comparing classical and lab plasma dynamos S. Prager University of Wisconsin useful discussions with D. Craig, H. Ji, J. Sarff, E. Zweibel.
Multiple reconnections and explosive events and in MST and solar flares Gennady Fiksel CMSO workshop, Princeton, NJ, Oct 5-8, 2005.
Magnetic Chaos and Transport Paul Terry and Leonid Malyshkin, group leaders with active participation from MST group, Chicago group, MRX, Wisconsin astrophysics.
MHD Dynamos in the Lab and Dynamos Beyond MHD. The lab plasma dynamo does Generate current locally Increase toroidal magnetic flux Conserve magnetic helicity.
Anomalous Ion Heating Status and Research Plan
Some New Data From FRC Experiment on Relaxation For discussions at Hall-Dynamo and Related Physics meeting CMSO June 10-11, 2004 at PPPL Guo et al, PRL.
Ideas for overseas contributions to CMSO Piero Martin Consorzio RFX Associazione Euratom-ENEA sulla fusione And Physics Dept., Univ. of Padova, Italy CMSO.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Charge-Exchange Spectroscopy at the University of Wisconsin-Madison Mark Nornberg Santhosh Kumar, Daniel Den Hartog Alexis Briesemeister 2012 ADAS Workshop.
Momentum Transport During Reconnection Events in the MST Reversed Field Pinch Alexey Kuritsyn In collaboration with A.F. Almagri, D.L. Brower, W.X. Ding,
The Reversed Field Pinch: on the path to fusion energy S.C. Prager September, 2006 FPA Symposium.
Magnetic Relaxation with Oscillating Field Current Drive on MST Doug Stone A.F. Almagri, G. Fiksel, K.J. McCollam, J.S. Sarff Midwest Magnetic Fields Workshop.
Cyclic MHD Instabilities Hartmut Zohm MPI für Plasmaphysik, EURATOM Association Seminar talk at the ‚Advanced Course‘ of EU PhD Network, Garching, September.
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
RFX/RFP mode control issues Piero Martin & Sergio Ortolani Consorzio RFX Associazione Euratom-ENEA sulla fusione Padova, Italy Presented by P. Martin at.
Physics of fusion power Lecture 11: Diagnostics / heating.
Plasma Dynamics Lab HIBP Abstract Measurements of the radial equilibrium potential profiles have been successfully obtained with a Heavy Ion Beam Probe.
MHD Behaviour of Low-Aspect-Ratio RFP Plasmas in RELAX S.Masamune, T.Onchi, A.Sanpei, R.Ikezoe, K.Oki, T.Yamashita, H.Shimazu, N.Nishino 1), R.Paccagnella.
Results from Visible Light Imaging of Alfvén Fluctuations in the H-1NF Heliac J. Read, J. Howard, B. Blackwell, David Oliver, & David Pretty Acknowledgements:
8.30 – 9.10 Coffee and Registration (fee 400 Swedish crowns) Welcome Plasma wall interactions and edge physics – chairman: Brunsell P. - Hirano.
13th IEA/RFP Workshop – Stockholm October 9-11, D characterization of thermal core topology changes in controlled RFX-mod QSH states A. Alfier on.
Plasma Dynamics Lab HIBP Abstract Measurements of the radial equilibrium potential profiles have been successfully obtained with a Heavy Ion Beam Probe.
M. Zuin 13th IEA/RFP WorkshopStockholm, October 9-11, 2008 Self-organized helical equilibria emerging at high current in RFX-mod Matteo Zuin on behalf.
Non-collisional ion heating and Magnetic Turbulence in MST Abdulgader Almagri On behalf of MST Team RFP Workshop Padova, Italy April 2010.
RFX Program on Active Control at the 9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS": NOVEMBER 21-23, 2004, PPPL.
J A Snipes, 6 th ITPA MHD Topical Group Meeting, Tarragona, Spain 4 – 6 July 2005 TAE Damping Rates on Alcator C-Mod Compared with Nova-K J A Snipes *,
Tobias—July, 2015 Benjamin John Tobias Princeton Plasma Physics Laboratory with M. Chen 1, C.W. Domier 1, R. Fitzpatrick 2, B.A. Grierson 3, N.C. Luhmann,
Plasma Dynamics Lab HIBP E ~ 0 V/m in Locked Discharges Average potential ~ 580 V  ~ V less than in standard rotating plasmas Drop in potential.
The efficient sustainment of a stable, high-β spheromak: modeling By Tom Jarboe, To PSI-Center July 29, 2015.
Resonant magnetic perturbation effect on the tearing mode dynamics in EXTRAP T2R: experimental results and modeling L. Frassinetti, K.E.J. Olofsson, P.R.
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
Nonlinear interactions between micro-turbulence and macro-scale MHD A. Ishizawa, N. Nakajima, M. Okamoto, J. Ramos* National Institute for Fusion Science.
Contribution of KIT to LHD Topics from collaboration research on MHD phenomena in LHD S. Masamune, K.Y. Watanabe 1), S. Sakakibara 1), Y. Takemura, KIT.
1 Importance of two-fluid in helicity injection current drive.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Active Control of MHDinstabilitiy 2002/11/19 S.Ohdachi et.al. Sawtooth-like phenomena in LHD S. Ohdachi, S.Yamamoto, K. Toi, K. Y.Watanabe, S.Sakakibara,
RFX-mod Program Workshop, Padova, January Current filaments in turbulent magnetized plasmas E. Martines.
RFX workshop / /Valentin Igochine Page 1 Control of MHD instabilities. Similarities and differences between tokamak and RFP V. Igochine, T. Bolzonella,
Weixing Ding University of California, Los Angeles,USA collaborators: D.L. Brower, W. Bergerson, D. Craig, D. Demers, G.Fiksel, D.J. Den Hartog, J. Reusch,
FEC 2006 Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower.
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
Demonstration of tearing mode braking and locking due to eddy currents in a toroidal magnetic fusion device B.E. Chapman (University of Wisconsin, USA)
Simulations of NBI-driven Global Alfven Eigenmodes in NSTX E. V. Belova, N. N. Gorelenkov, C. Z. Cheng (PPPL) NSTX Results Forum, PPPL July 2006 Motivation:
Transition to helical RFP state and associated change in magnetic stochasticity in a low-aspect-ratio RFP A.Sanpei, R.Ikezoe, T. Onchi, K.Oki, T.Yamashita,
Helically Symmetry Configuration Evidence for Alfvénic Fluctuations in Quasi-Helically Symmetric HSX Plasmas C. Deng and D.L. Brower, University of California,
Interaction between vortex flow and microturbulence Zheng-Xiong Wang (王正汹) Dalian University of Technology, Dalian, China West Lake International Symposium.
HT-7 Proposal of the investigation on the m=1 mode oscillations in LHCD Plasmas on HT-7 Exp2005 ASIPP Youwen Sun, Baonian Wan and the MHD Team Institute.
TH/7-1Multi-phase Simulation of Alfvén Eigenmodes and Fast Ion Distribution Flattening in DIII-D Experiment Y. Todo (NIFS, SOKENDAI) M. A. Van Zeeland.
Profiles of density fluctuations in frequency range of (20-110)kHz Core density fluctuations Parallel flow measured by CHERS Core Density Fluctuations.
Reconnection Process in Sawtooth Crash in the Core of Tokamak Plasmas Hyeon K. Park Ulsan National Institute of Science and Technology, Ulsan, Korea National.
Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik1, D.L. Brower2, C. Deng2,
Magnetic fluctuation measurements in HSX and its impact on transport
Influence of energetic ions on neoclassical tearing modes
Presentation transcript:

Control of Magnetic Chaos & Self-Organization John Sarff for MST Group CMSO General Meeting Madison, WI August 4-6, 2004

Plasma control permits adjustment of magnetic reconnection and self-organization processes in the RFP. r / ar / a Toroidal, r / ar / a Adjust Current Drive Example: Reduce tearing fluctuations and magnetic chaos by current profile control.

Outline. Control MHD tearing and consequent relaxation processes by: Adjustments to inductive current drive –Reduce tearing by matching E(r) to more stable J(r) –AC helicity injection (oscillating loop voltages) Adjustment of mean-field B(r) to include/exclude resonant surfaces Tuning for empirically different resonant mode spectra, e.g., quasi-single-helicity (QSH) Other control techniques used previously: – electrostatic probe biasing (edge current drive & rotation control) – helical magnetic perturbations from external coils

Outline. Control MHD tearing and consequent relaxation processes by: Adjustments to inductive current drive –Reduce tearing by matching E(r) to more stable J(r) –AC helicity injection (oscillating loop voltages) Adjustment of mean-field B(r) to include/exclude resonant surfaces Tuning for empirically different resonant mode spectra, e.g., quasi-single-helicity (QSH) Other control techniques used previously: – electrostatic probe biasing (edge current drive & rotation control) – helical magnetic perturbations from external coils

Magnetic reconnection (resonant tearing) occurs at many radii in the RFPs sheared magnetic field. RFP Magnetic Geometry Tearing resonance:

Standard induction produces a peaked current profile, unstable to MHD tearing (free energy r J || /B ). Standard RFP Ohms law imbalance characteristic of steady induction in the RFP

Standard induction produces a peaked current profile, unstable to MHD tearing (free energy r J || /B ). Standard RFP Ohms law imbalance characteristic of steady induction in the RFP multiple dynamo-like effects possible (several observed)

Poloidal inductive current drive targeted to outer region reduces MHD tearing instability. Measured E(r) Profiles Pulsed Poloidal Current Drive ms

Magnetic fluctuations reduced at all scales & frequencies. Long wavelength amplitude spectrum Frequency (kHz) (T 2 /Hz) Frequency power spectrum PPCD Standard Toroidal Mode, n

Dynamo essentially absent with PPCD. PPCDStandard RFP Simple Ohms law satisfied strong dynamoweak dynamo (simple Ohms law satisfied)

Electron T e and energy confinement increase. PPCD

Stochastic magnetic diffusivity and heat transport reduced 30-fold in core. (m 2 /s) r/a field line tracing where magnetic chaos is strong (several overlapping islands) measured predicted Rechester-Rosenbluth PPCD Standard R-R

Anomalous ion heating probably reduced. T i (r) Profiles Standard: P e-i < P CX and T i / T e ~ 1 anomalous ion heating must occur PPCD: P e-i P CX and T i / T e ~ 0.5 collisional ion heating only?? PPCD

Anomalous ion heating probably reduced. T i (r) Profiles Standard: P e-i < P CX and T i / T e ~ 1 anomalous ion heating must occur PPCD: P e-i P CX and T i / T e ~ 0.5 collisional ion heating only?? PPCD

Outline. Control MHD tearing and consequent relaxation processes by: Adjustments to inductive current drive –Reduce tearing by matching E(r) to more stable J(r) –AC helicity injection (oscillating loop voltages) Adjustment of mean-field B(r) to include/exclude resonant surfaces Tuning for empirically different resonant mode spectra, e.g., quasi-single-helicity (QSH) Other control techniques used previously: – electrostatic probe biasing (edge current drive & rotation control) – helical magnetic perturbations from external coils

Nonlinear mode coupling appears important for anomalous momentum transport. Nonlinear torque: force on n=6 (plasma rotation)

Adjusting B(r) to exclude m = 0 resonance greatly reduces momentum loss & ion heating during relaxation events. Shift q > 0 to remove m = 0 resonance

Adjusting B(r) to exclude m = 0 resonance greatly reduces momentum loss & ion heating during relaxation events. No sudden rotation loss with small m = 0

Outline. Control MHD tearing and consequent relaxation processes by: Adjustments to inductive current drive –Reduce tearing by matching E(r) to more stable J(r) –AC helicity injection (oscillating loop voltages) Adjustment of mean-field B(r) to include/exclude resonant surfaces Tuning for empirically different resonant mode spectra, e.g., quasi-single-helicity (QSH) Other control techniques used previously: – electrostatic probe biasing (edge current drive & rotation control) – helical magnetic perturbations from external coils

Under come conditions, the tearing spectrum is dominated by one mode. MST RFX Soft x-ray image Spontaneous Quasi-Single Helicity (QSH)

Magnetic & velocity fluctuations are single-mode dominated. (mT) (km/s) QSHStandard QSHStandard

MHD dynamo is single-mode dominated in QSH. (V/m) QSH Standard

Outline. Control MHD tearing and consequent relaxation processes by: Adjustments to inductive current drive –Reduce tearing by matching E(r) to more stable J(r) –AC helicity injection (oscillating loop voltages) Adjustment of mean-field B(r) to include/exclude resonant surfaces Tuning for empirically different resonant mode spectra, e.g., quasi-single-helicity (QSH) Other control techniques used previously: – electrostatic probe biasing (edge current drive & rotation control) – helical magnetic perturbations from external coils

AC helicity injection using oscillating loop voltages. apply oscillating V Magnetic helicity balance evolution: (Standard RFP: V, = constant)

AC helicity injection using oscillating loop voltages. apply oscillating V Magnetic helicity balance evolution: (Standard RFP: V, = constant)

MHD behavior is altered when AC loop voltage applied. Time (ms) AC volts on relaxation events entrained (V) (G) m = 0 m = 1 increase between crash

Between-crash heating should help identify anomalous ion heating mechanism. sawtooth crash smaller heating at applied frequency

Summary. Several methods to control and adjust MHD tearing-reconnection have been developed for the RFP. Characteristics and strength of consequent relaxation processes are adjustable. MSTs CMSO plans systematically include PPCD, q > 0, OFCD, etc. as tools to expose underlying physics.

Tearing occurs spontaneously, both from linear instability and nonlinear mode coupling. Core-resonant m=1 modes are largest, calculated to be linearly unstable from. Edge-resonant m=0 modes grow from nonlinear coupling to the unstable m=1 modes.