Helical MagnetoRotational Instability and Issues in Astrophysical Jets Jeremy Goodman 1,3 Hantao Ji 2,3 Wei Liu 2,3 CMSO General Meeting 5-7 October 2005.

Slides:



Advertisements
Similar presentations
1 VO Theory Use Cases – Intermediate Scale David De Young Project Scientist US NVO IVOA Theory Interest Group S. Lorenzo del Escorial - 10/05.
Advertisements

Magnetic Relaxation in MST S. Prager University of Wisconsin and CMSO.
Analog of Astrophysical Magnetorotational Instability in a Couette-Taylor Flow of Polymer Fluids Don Huynh, Stanislav Boldyrev, Vladimir Pariev University.
Dissipation in Force-Free Astrophysical Plasmas Hui Li (Los Alamos National Lab) Radio lobe formation and relaxation Dynamical magnetic dissipation in.
Outline: I. Introduction, background, and examples of momentum transport II. Momentum transport physics topics being addressed by CMSO - Physics, Plans,
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Outline: I. Introduction and examples of momentum transport II. Momentum transport physics topics being addressed by CMSO III. Selected highlights and.
Madison 2006 Dynamo Fausto Cattaneo ANL - University of Chicago Stewart Prager University of Wisconsin.
Collaborators: Jungyeon Cho --- Chungnam U.
Initial Hydrodynamic Results from the Princeton MRI Experiment M.J. Burin 1,3, H. Ji 2,3, J. Goodman 1,3, E. Schartman 2, W. Liu 2,3 1. Princeton University.
Experimental Tests of Two-Fluid Relaxation D. Craig and MST Team University of Wisconsin – Madison General Meeting of the Center for Magnetic Self-Organization.
The Accretion of Poloidal Flux by Accretion Disks Princeton 2005.
Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart.
Comparing classical and lab plasma dynamos S. Prager University of Wisconsin useful discussions with D. Craig, H. Ji, J. Sarff, E. Zweibel.
Multiple reconnections and explosive events and in MST and solar flares Gennady Fiksel CMSO workshop, Princeton, NJ, Oct 5-8, 2005.
Global Simulations of Astrophysical Jets in Poynting Flux Dominated Regime Hui Li S. Colgate, J. Finn, G. Lapenta, S. Li Engine; Injection; Collimation;
CMSO 2005 Simulation of Gallium experiment * § Aleksandr Obabko Center for Magnetic-Self Organization Department of Astronomy and Astrophysics.
Some New Data From FRC Experiment on Relaxation For discussions at Hall-Dynamo and Related Physics meeting CMSO June 10-11, 2004 at PPPL Guo et al, PRL.
Simulations of Princeton Gallium Experiment Wei Liu Jeremy Goodman Hantao Ji Jim Stone Michael J. Burin Ethan Schartman CMSO Plasma Physics Laboratory.
Proposed Study of Dynamo Activity Associated with Astrophysical Jets Carl Sovinec, Univ. of WI, Engineering Physics study suggested by Stirling Colgate.
An update of results from the Princeton MRI Experiment Mark Nornberg Contributors: E. Schartman, H. Ji, A. Roach, W. Liu, and Jeremy Goodman CMSO General.
Outline Dynamo: theoretical General considerations and plans Progress report Dynamo action associated with astrophysical jets Progress report Dynamo: experiment.
November 3-5, 2003Feedback Workshop, Austin NORMAL MODE APPROACH TO MODELING OF FEEDBACK STABILIZATION OF THE RESISTIVE WALL MODE By M.S. Chu(GA), M.S.
Proto-Planetary Disk and Planetary Formation
ANALYTICAL STUDIES OF MHD OUTFLOWS Self-similar solutions Outflows from stellar bodies From Solar Wind To Stellar winds (O  M stars) Compact objects (pulsars,
Magnetic dissipation in Poynting dominated outflows Yuri Lyubarsky Ben-Gurion University.
The CD Kink Instability in Magnetically Dominated Relativistic Jets * The relativistic jets associated with blazar emission from radio through TeV gamma-rays.
Steady Models of Black Hole Accretion Disks including Azimuthal Magnetic Fields Hiroshi Oda (Chiba Univ.) Mami Machida (NAOJ) Kenji Nakamura (Matsue) Ryoji.
SELF-SIMILAR SOLUTIONS OF VISCOUS RESISTIVE ACCRETION FLOWS Jamshid Ghanbari Department of Physics, School of Sciences, Ferdowsi University of Mashhad,
Physics of Relativistic Jets Yuri Lyubarsky Ben-Gurion University Beer-Sheva, Israel.
Astrophysical jets Yuri Lyubarsky Ben-Gurion University.
How to Form Ultrarelativistic Jets Speaker: Jonathan C. McKinney, Stanford Oct 10, 2007 Chandra Symposium 2007.
Magnetic accelerations of relativistic jets. Serguei Komissarov University of Leeds UK TexPoint fonts used in EMF. Read the TexPoint manual before you.
1 Hantao Ji Princeton Plasma Physics Laboratory Experimentalist Laboratory astrophysics –Reconnection, angular momentum transport, dynamo effect… –Center.
Shock acceleration of cosmic rays Tony Bell Imperial College, London.
Mitch Begelman JILA, University of Colorado
Relativistic Outflow Formation by Magnetic Field around Rapidly Rotating Black Hole Shinji Koide ( Toyama University ) Black Hole 2003, October 29 (Wed),
Magnetic Fields and Jet Formation John F. Hawley University of Virginia Workshop on MRI Turbulence June 18 th 2008.
Three-dimensional MHD Simulations of Jets from Accretion Disks Hiromitsu Kigure & Kazunari Shibata ApJ in press (astro-ph/ ) Magnetohydrodynamic.
MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.
Cosmic Magnetic Fields: Helicity Injection by Supermassive Black Holes, Galaxies and Laboratory Experiments Hui Li 李暉 Los Alamos National Laboratory and.
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL 6. Jets and radio emission.
Dynamo theory and magneto-rotational instability Axel Brandenburg (Nordita) seed field primordial (decay) diagnostic interest (CMB) AGN outflows MRI driven.
Magnetic fields generation in the core of pulsars Luca Bonanno Bordeaux, 15/11/2010 Goethe Universität – Frankfurt am Main.
General Relativistic MHD Simulations with Finite Conductivity Shinji Koide (Kumamoto University) Kazunari Shibata (Kyoto University) Takahiro Kudoh (NAOJ)
Three-Dimensional MHD Simulation of Astrophysical Jet by CIP-MOCCT Method Hiromitsu Kigure (Kyoto U.), Kazunari Shibata (Kyoto U.), Seiichi Kato (Osaka.
The Magnetorotational Instability
June 08MRI Transport properties1 MRI-driven turbulent resistivity Pierre-Yves Longaretti (LAOG) Geoffroy Lesur (DAMTP)
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Masahiro Machida (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.) Outflow jet first coreprotostar v~5 km/s v~50 km/s 360.
Comparing Poynting flux dominated magnetic towers with kinetic-energy dominated jets Martín Huarte-Espinosa, Adam Frank and Eric Blackman, U. of Rochester.
Warm Absorbers: Are They Disk Outflows? Daniel Proga UNLV.
Sawtooth-like Oscillations of Black Hole Accretion Disks Ryoji Matsumoto (Chiba Univ.) Mami Machida (NAOJ)
Initial Conditions As an initial condition, we assume that an equilibrium disk rotates in a central point-mass gravitational potential (e.g., Matsumoto.
Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka.
Magnetorotational Instability (MRI) Experiment
Global Simulations of Time Variabilities in Magnetized Accretion Disks Ryoji Matsumoto (Chiba Univ.) Mami Machida (NAOJ)
THE BLANDFORD EFFECT IN HONOR OF ROGER AT 60 Chris McKee Oct 17, 2009.
T HE VORTICAL MECHANISM OF GENERATION & COLLIMATION OF THE ASTROPHYSICAL JETS M.G. A BRAHAMYAN Yerevan State University, Armenia.
Page 1 Collisionless and relativistic plasma astrophysics 2007 CRPA The quest for questions: a reflective summary of the discussion Monday: edited during.
The Role of Magnetic Fields in Black Hole Accretion
Plasma outflow from dissipationless accretion disks
Spectral and Algebraic Instabilities in Thin Keplerian Disks: I – Linear Theory Edward Liverts Michael Mond Yuri Shtemler.
Dynamo action & MHD turbulence (in the ISM, hopefully…)
Numerical Simulations of Relativistic Jets
Contents Introduction Force-Free Approximation Analytical Solutions
Ahmed Ibrahim Kazunari Shibata Kwasan Observatory, Kyoto University
Compact radio jets and nuclear regions in galaxies
Magnetic fields in ADs Magnetic “flux tube”.
An MHD Model for the Formation of Episodic Jets
Presentation transcript:

Helical MagnetoRotational Instability and Issues in Astrophysical Jets Jeremy Goodman 1,3 Hantao Ji 2,3 Wei Liu 2,3 CMSO General Meeting 5-7 October Princeton University Observatory 2 Princeton Plasma Physics Lab 3 CMSO Research supported by DOE and by NSF grant AST

Goodman: Helical MRI and Jets CMSO Gen. Mtg., 5-7 Oct axisymmetric axial background field free energy from differential rotation basically ideal mode: V A ~V rot L -1 real growth rates, i.e. non- oscillatory fast: Re(s) ~ V rot /r axisymmetric axial plus toroidal bkgd. field –potential field (J 0 =0) free energy from differential rotation persists in the resistive limit: L -1 >> V A,V rot complex growth rates, i.e. growth with oscillation slow: Re(s) << Basic MRIHelical MRI

Goodman: Helical MRI and Jets CMSO Gen. Mtg., 5-7 Oct Marginal Stability Helical MRI tolerates more dissipation Hollerbach & Rüdiger, PRL (2005) Rüdiger et al. Astron. Nachr. 326 (6) 409 (2005) Basic MRI Helical MRI instability at slower rotation… …and weaker field

Goodman: Helical MRI and Jets CMSO Gen. Mtg., 5-7 Oct Our questions What is the physical nature of helical MRI ? –why does it extend to arbitrarily large resistivity ? Is helical MRI really easier to realize experimentally? –are the growth rates large enough to be measured? –are the required toroidal fields achievable? –can the mode grow at all with finite vertical boundaries? What are the astrophysical implications ? –can this mode operate in weakly ionized disks where standard MRI may not? –are jets a more natural context?

Goodman: Helical MRI and Jets CMSO Gen. Mtg., 5-7 Oct S, Rm 0 : Inertial Oscillations k + Magnetic field decouples + Circulation v dS is conserved, absent viscosity + Straight vortex lines minimize energy - background vorticity = 2 = epicyclic frequency ( k) + Dispersion relation of transverse waves: 2 = ( cos ) 2 - depends on direction not wavelength

Goodman: Helical MRI and Jets CMSO Gen. Mtg., 5-7 Oct Large resistivity (0 < S, Rm << 1) inertial oscillation resistive diffusion excitation if k z B B z > 0 damping At least in WKB, net excitation occurs at Rm<<1 only if This is a quadratic form in k z B z & r -1 B cos …which excludes the Keplerian case,.

Goodman: Helical MRI and Jets CMSO Gen. Mtg., 5-7 Oct Full local dispersion relation

Goodman: Helical MRI and Jets CMSO Gen. Mtg., 5-7 Oct Experimental issues Growth rates are rather small –< 1 sec -1 in typical geometry (r 1 = 5 cm, r 2 = 10 cm, gallium) may do better in a smaller system! –may be swamped by Ekman circulation, etc. Large axial currents are needed –e.g. B > cm I z > 3.2 kAmp Mode may not grow at all without periodic vertical boundaries (TBD) ! –V phase of growing mode opposes background axial momentum flux F z = - B B z /

Goodman: Helical MRI and Jets CMSO Gen. Mtg., 5-7 Oct Astrophysical relevance Persistence to low Rm is interesting –protostellar disks, white-dwarf disks in quiescence,... But helical MRI may not operate in disks –seems to require < 2( ) 0.828, yet keplerian =1 –need B /B z ~ 2k z r ~ 10r/h >> 1 (h=disk thickness) –a definite sign of vertical phase velocity seems needed; not clear what happens when mode meets surface of disk More natural geometry for this mode is in a jet –effectively infinite along axis –but jets are already prone to several vigorous instabilities pinch, kink, Kelvin-Helmholtz,...

Goodman: Helical MRI and Jets CMSO Gen. Mtg., 5-7 Oct Summary of helical MRI (to date) Sets in at much lower Rm & S than conventional MRI Appears to be a hydrodynamic mode (inertial oscillation) destabilized by resistive MHD –free energy from differential rotation, not currents Growth requires an axial phase velocity opposing background B B z momentum flux –may prevent growth for finite/nonperiodic axes Experimental verification may be at least as hard as for conventional MRI Relevance to keplerian accretion disks is doubtful

Goodman: Helical MRI and Jets CMSO Gen. Mtg., 5-7 Oct Astrophysical jets: a bestiary Protostellar jet L~ 10 light-year V~ 300 km s -1 n e ~ 10 3 cm -3 n H ~ 10 4 cm -3 T ~ 1 eV B ~ 100 G M87 jet L ~ 10 4 lt-yr V ~ c ( max > 6) optical synchrotron AGN radio jets V ~ c ( jet ~ few) L~ lt-yr n e ~ cm -3, n p ~ ? e ~ few 10 3 B ~ 100 G synchrotron emission

Goodman: Helical MRI and Jets CMSO Gen. Mtg., 5-7 Oct Astrophysical Jets: Issues Acceleration –probably by rotating star/disk/black hole, magnetically coupled to gas/plasma/Poynting flux Collimation –probably toroidal fields + exterior pressure Dissipation & field amplification –Kelvin-Helmholtz against ambient medium –force-free MHD modes (pinch, kink) –internal shocks needed for particle acceleration –reconnection (?)

Goodman: Helical MRI and Jets CMSO Gen. Mtg., 5-7 Oct Jets: A bibliography Begelman, Blandford, & Rees, Rev. Mod. Phys. 56(2), 255 (1984). Theory of Extragalactic Radio Sources de Gouveia dal Pino, E. M., Adv. Sp. Res. 35(5), 908 (2005). Astrophysical jets & outflows De Young, D. S., The Physics of Extragalactic Radio Sources, Univ. Chicago Press (2002). Spruit, H.C., Jets from Compact Objects in Proc. IAU Symp. #195 (San Francisco: Pub. Astron. Soc. Pacific), p. 113 (2000).