Magnetic Turbulence during Reconnection General Meeting of CMSO Madison, August 4-6, 2004 Hantao Ji Center for Magnetic Self-organization in Laboratory.

Slides:



Advertisements
Similar presentations
Plans for Magnetic Reconnection Research Masaaki Yamada Ellen Zweibel for Magnetic Reconnection Working group CMSO Planning Meeting at U. Chicago November.
Advertisements

NSF Site Visit Madison, May 1-2, 2006 Magnetic Helicity Conservation and Transport R. Kulsrud and H. Ji for participants of the Center for Magnetic Self-organization.
Dynamo Effects in Laboratory Plasmas S.C. Prager University of Wisconsin October, 2003.
Ion Heating Induced by Waves Russell M. Kulsrud Princeton Plasma Physics Laboratory.
Experimental tasks Spectra Extend to small scale; wavenumber dependence (Taylor hyp.); density, flow Verify existence of inertial range Determine if decorrelation.
Ion Heating Presented by Gennady Fiksel, UW-Madison for CMSO review panel May 1-2, 2006, Madison.
Generation of Magnetic Fields in Gravitationally Forming Structures in the Early Universe Russell M. Kulsrud Princeton Plasma Physics Laboratory.
Control of Magnetic Chaos & Self-Organization John Sarff for MST Group CMSO General Meeting Madison, WI August 4-6, 2004.
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Overview of CMSO Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas S. Prager May, 2006.
Magnetic Turbulence in MRX (for discussions on a possible cross-cutting theme to relate turbulence, reconnection, and particle heating) PFC Planning Meeting.
Intermittency of MHD Turbulence A. Lazarian UW-Madison: Astronomy and Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas Special.
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI CMSO Meeting Madison, WI August.
Experimental Tests of Two-Fluid Relaxation D. Craig and MST Team University of Wisconsin – Madison General Meeting of the Center for Magnetic Self-Organization.
Introduction to CMSO Meeting Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas.
Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart.
Reconnection: Theory and Computation Programs and Plans C. C. Hegna Presented for E. Zweibel University of Wisconsin CMSO Meeting Madison, WI August 4,
Multiple reconnections and explosive events and in MST and solar flares Gennady Fiksel CMSO workshop, Princeton, NJ, Oct 5-8, 2005.
Anomalous Ion Heating Status and Research Plan
Some New Data From FRC Experiment on Relaxation For discussions at Hall-Dynamo and Related Physics meeting CMSO June 10-11, 2004 at PPPL Guo et al, PRL.
General Meeting Madison, August 4-6, 2004 Plans and Progress of Magnetic Helicity Conservation and Transport H. Ji for participants of the Center for Magnetic.
Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas Office of Science U.S. Department of Energy ION HEATING: Planning the next.
Progress and Plans on Magnetic Reconnection for CMSO M. Yamada, C. Hegna, E. Zweibel For General meeting for CMSO August 4, Recent progress and.
Results from Magnetic Reconnection Experiment And Possible Application to Solar B program For Solar B Science meeting, Kyoto, Japan November 8-11, 2005.
Dynamical plasma response during driven magnetic reconnection in the laboratory Ambrogio Fasoli* Jan Egedal MIT Physics Dpt & Plasma Science and Fusion.
Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
1 MHD Simulations of 3D Reconnection Triggered by Finite Random Resistivity Perturbations T. Yokoyama Univ. Tokyo in collaboration with H. Isobe (Kyoto.
Magnetic Reconnection: Progress and Status of Lab Experiments In collaboration with members of MRX group and NSF-DoE Center of Magnetic Self-organization.
Fast Magnetic Reconnection B. Pang U. Pen E. Vishniac.
Laboratory Studies of Magnetic Reconnection – Status and Opportunities – HEDLA 2012 Tallahassee, Florida April 30, 2012 Hantao Ji Center for Magnetic Self-organization.
1 / 22 Solar Flares and Magnetic Reconnection T. Yokoyama (NAOJ) Solar-B science meeting ISAS, NAOJ.
William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at: Second Workshop on Thin Current Sheets University of Maryland April.
Modeling Generation and Nonlinear Evolution of Plasma Turbulence for Radiation Belt Remediation Center for Space Science & Engineering Research Virginia.
Nonlinear Evolution of Whistler Turbulence W.A. Scales, J.J. Wang, and O. Chang Center of Space Science and Engineering Research Virginia Tech L. Rudakov,
Sept. 12, 2006 Relationship Between Particle Acceleration and Magnetic Reconnection.
Solar Flare Particle Heating via low-beta Reconnection Dietmar Krauss-Varban & Brian T. Welsch Space Sciences Laboratory UC Berkeley Reconnection Workshop.
Hybrid Simulation of Ion-Cyclotron Turbulence Induced by Artificial Plasma Cloud in the Magnetosphere W. Scales, J. Wang, C. Chang Center for Space Science.
In-situ Observations of Collisionless Reconnection in the Magnetosphere Tai Phan (UC Berkeley) 1.Basic signatures of reconnection 2.Topics: a.Bursty (explosive)
Shock Wave Related Plasma Processes
Non-collisional ion heating and Magnetic Turbulence in MST Abdulgader Almagri On behalf of MST Team RFP Workshop Padova, Italy April 2010.
1 Hantao Ji Princeton Plasma Physics Laboratory Experimentalist Laboratory astrophysics –Reconnection, angular momentum transport, dynamo effect… –Center.
In-situ observations of magnetic reconnection in solar system plasma What can we export to other astrophysical environments? Alessandro Retinò, R. Nakamura.
Reconnection in Large, High-Lundquist- Number Coronal Plasmas A.Bhattacharjee and T. Forbes University of New Hampshire Monday, August 3, Salon D, 2-5.
Multiscale issues in modeling magnetic reconnection J. F. Drake University of Maryland IPAM Meeting on Multiscale Problems in Fusion Plasmas January 10,
Numerical Simulation on Flow Generated Resistive Wall Mode Shaoyan Cui (1,2), Xiaogang Wang (1), Yue Liu (1), Bo Yu (2) 1.State Key Laboratory of Materials.
Computational Astrophysics: Magnetic Fields and Charged Particle Dynamics 11-dec-2008.
Experimental Study of Magnetic Reconnection and Dynamics of Plasma Flare Arc in MRX Masaaki Yamada August SHINE Meeting at Nova Scotia Center.
SHINE 2004 THE ORIGIN OF THE SLOW SOLAR WIND Leon Ofman Department of Physics The Catholic University of America and NASA Goddard Space Flight Center.
Anomalous resistivity due to lower-hybrid drift waves. Results of Vlasov-code simulations and Cluster observations. Ilya Silin Department of Physics University.
Reconnection rates in Hall MHD and Collisionless plasmas
3D Reconnection Simulations of Descending Coronal Voids Mark Linton in collaboration with Dana Longcope (MSU)
SOHO-20 “Transient events on the Sun and In the Heliosphere” – August 28, 2008, Ghent SOHO-20 “Transient events on the Sun and In the Heliosphere” – August.
1 Turbulent Generation of Large Scale Magnetic Fields in Unmagnetized Plasma Vladimir P.Pavlenko Uppsala University, Uppsala, Sweden.
II. MAGNETOHYDRODYNAMICS (Space Climate School, Lapland, March, 2009) Eric Priest (St Andrews)
Spectroscopic Detection of Reconnection Evidence with Solar-B II. Signature of Flows in MHD simulation Hiroaki ISOBE P.F. Chen *, D. H. Brooks, D. Shiota,
Simulation Study of Magnetic Reconnection in the Magnetotail and Solar Corona Zhi-Wei Ma Zhejiang University & Institute of Plasma Physics Beijing,
A. Vaivads, M. André, S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E.
MHD and Kinetics Workshop February 2008 Magnetic reconnection in solar theory: MHD vs Kinetics Philippa Browning, Jodrell Bank Centre for Astrophysics,
Coronal Heating due to low frequency wave-driven turbulence W H Matthaeus Bartol Research Institute, University of Delaware Collaborators: P. Dmitruk,
Electron-Scale Dissipations During Magnetic Reconnection The 17th Cluster Workshop May 12-15, 2009 at Uppsala, Sweden Hantao Ji Contributors: W. Daughton*,
Yang Henglei( 杨恒磊 ),Wang Xiaogang( 王晓钢 ) State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams; The Department of Physics;
Alex Lazarian Astronomy Department and Center for Magnetic Self- Organization in Astrophysical and Laboratory Plasmas Collaboration: Ethan Vishniac, Grzegorz.
Fast Reconnection in High-Lundquist- Number Plasmas Due to Secondary Tearing Instabilities A.Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers Center.
二维电磁模型 基本方程与无量纲化 基本方程. 无量纲化 方程化为 二维时的方程 时间上利用蛙跳格式 网格划分.
Magnetic Reconnection in Solar Flares
Computational Methods for Kinetic Processes in Plasma Physics
Field-Particle Correlation Experiments on DIII-D Frontiers Science Proposal Under weakly collisional conditions, collisionless interactions between electromagnetic.
N. D’Angelo, B. Kustom, D. Susczynsky, S. Cartier, J. Willig
Electromagnetic Radiation
Self-organized criticality in gamma-ray bursts and black holes
Presentation transcript:

Magnetic Turbulence during Reconnection General Meeting of CMSO Madison, August 4-6, 2004 Hantao Ji Center for Magnetic Self-organization in Laboratory and Astrophysical Plasmas Princeton Plasma Physics Laboratory, Princeton University Contributors:Will Fox Stefan Gerhardt Russell Kulsrud Aleksey Kuritsyn Yang Ren Masaaki Yamada Yansong Wang

2 Outline Introduction –Magnetic Reconnection Experiment (MRX) –Quantitative test of Sweet-Parker model High-frequency electromagnetic turbulence detected, in correlation with fast reconnection –Similarities with space measurements Understanding EM turbulence –An EM instability revealed by a simple 2-fluid theory Summary

3 Physical Questions on Reconnection How does reconnection start? (The trigger problem) How local reconnection is controlled by global dynamic (constraints) and vice versa ? Why reconnection is fast compared to classical theory? How ions and electrons are heated or accelerated? Is reconnection inherently 3D or basically 2D? Is reconnection turbulent or laminar?

4 Sweet-Parker Model vs. Petschek Model 2D & steady state Imcompressible Classical resistivity Sweet-Parker Model Petschek Model A much smaller diffusion region (L<<L) Shock structure to open up outflow channel Problem: not a solution for smooth resistivity profiles Problem: predictions are too slow to be consistent with observations (Biskamp,86; Uzdensky & Kulsrud, 00) Classic Leading Theories: Lundquist #:

5 Magnetic Reconnection Experiment (MRX) Other exps: SSX,VTF, RSX etc in US TS-3/4 in Japan 1 in Russia 1 will start in China What do we see in exp?

6 Experimental Setup in MRX Solid coils in vacuum

7 Realization of Stable Current Sheet and Quasi-steady Reconnection Measured by magnetic probe arrays, triple probes, optical probe, … Parameters: –B < 1 kG, –T e ~T i = 5-20 eV –n e =(0.02-1) /m 3 S < 1000 Sweet-Parker like diffusion region

8 Agreement with a Generalized Sweet- Parker Model The model modified to take into account of –Measured enhanced resistivity –Compressibility –Higher pressure in downstream than upstream (Ji et al. PoP 99) model

9 Resistivity Enhancement Depends on Collisionality Significant enhancement at low collisionalities (Ji et al. PRL 98) At current sheet center:

10 Turbulent vs. Laminar Models Enhanced due to (micro) instabilities Faster Sweet-Parker rates Re-establish Petschek model by localization anomalous resistivityFacilitated by Hall effects Separation of ion and electron layers Mostly 2D and laminar ion current e current (Drake et al. 98) Modern Leading Theories for Fast Reconnection: Expect: high-frequency turbulence Expect: electron scale structure in B What do we see in exp? (Ugai & Tsuda, 77; Sato & Hayashi, 79; Scholer, 89….)

11 Miniature Coils with Amplifiers Built in Probe Shaft to Measure High-frequency Fluctuations Four amplifiers Three-component, 1.25mm diameter coils Combined frequency response up to 30MHz

12 Fluctuations Successfully Measured in Current Sheet Region (Carter et al. PRL, 02) ES fluctuations, localized at low beta current sheet edge, did not correlate with resistivity enhancement

13 Magnetic Fluctuations Measured in Current Sheet Region Comparable amplitudes in all components Often multiple peaks in the LH frequency range (Ji et al. PRL, 04)

14 Waves Propagate in the Electron Drift Direction with a Large Angle to Local B Angle[k,B 0 ] Frequency (0-20MHz) R-wave V ph ~ V drift Local to certain angle and k

15 EM Wave Amplitude Correlates with Resistivity Enhancement

16 Similar Observation by Spacecraft at Earths Magnetopause (Phan et al. 03) ES EM (Bale et al. 04) high low high low

17 Physical Questions Q1: What is the underlying instability? Q2: How much resistivity does this instability produce? Q3: How much ions and electrons are heated?

18 Modified Two-Stream Instability at High-beta: An Electromagnetic Drift Instability In the context of collisionless shock… First exploration: local fluid theory (Ross, 1970) Full electron kinetic treatment (Wu, Tsai, et al., 1983, 1984) Full ion kinetic treatment and quasi-linear theory (Basu & Coppi, 1992; Yoon & Lui, 1993) Collisional effects (Choueiri, 1999, 2001) Global treatment (Huba et al., 1980, Yoon et al., 2002, Daughton, 2003) ES EM

19 A Local 2-Fluid Theory Regime: Assumptions –Massless, isotropic, magnetized electrons –Unmagnetized ions –No e-i collisions –Charge neutrality –Constant ion and electron temperature Equilibrium –Background magnetic field in z direction –Density gradient in y direction –Ions are at rest –Electrons drift across B in x direction –Thus, (Ji et al. in preparation, 04)

20 Dispersion Relation Normal mode decomposition for wave quantities: Dielectric tensor: 1st and 2nd lines: 3rd line from electron force balance along z direction: from continuity, ion, and electron equations

21 Dispersion Relation (Contd) Normalizations: Dispersion relation after re-arrangements: Fourth order in (K), with controlling parameters of V,,,.

22 Instability: Large Drifts Cause Coupling between Whistler and Sound Waves Angle K sound waves (ion) whistler waves (electron) more ES more EM

23 Unstable only at Certain Angles and K, Consistent with Observations V=1 V=3V=6

24 A Simple Physical Picture Cold electron limit; slow mode approximation Purely growing when unstable ES(de)compressiontension electron density perturbation B deforms in y direction nE 0 force J B force in z direction reinforce

25 Estimated Resistivity due to Observed Electromagnetic Waves Total energy and momentum density of EM waves: Resistivity: since waves are highly nonlinear (Kulsrud et al. 03)

26 How does reconnection start? (The trigger problem) How local reconnection is controlled by global dynamic (constraints) and vice versa ? Why reconnection is fast compared to classical theory? How ions and electrons are accelerated? Is reconnection inherently 3D or basically 2D? Is reconnection turbulent or laminar? Physical Questions on Reconnection –Driven in MRX –Boundary conditions important (large p down ) –Due to an electromagnetic drift instability? –Due to the same instability? –Globally 2D but locally 3D –Turbulent Answers or clues from MRX

27 Summary Physics of fast reconnection is studied in MRX –High frequency magnetic turbulence detected and identified as obliquely propagating whistler waves –Correlate positively with resistivity enhancement Turbulence consistent with an EM drift instability –Physics explored using a simple 2-fluid model –Nonlinear effects (resistivity and particle heating) are being studied –Need to be compared with simulations Connections to other plasmas –Measurements planned for strong guide-field cases, such as in MST –Commonalities with satellite in situ measurements in magnetosphere