Henrik Johansson CERN March 26, 2013 BUDS workshop INFN Frascati Henrik Johansson CERN March 26, 2013 BUDS workshop INFN Frascati 1201.5366, 1207.6666,

Slides:



Advertisements
Similar presentations
On d=3 Yang-Mills-Chern- Simons theories with “fractional branes” and their gravity duals Ofer Aharony Weizmann Institute of Science 14 th Itzykson Meeting.
Advertisements

Summing planar diagrams
Type II string effective action and UV behavior of maximal supergravities Jorge Russo U. Barcelona – ICREA Based on work in coll. with M.B. Green and P.
Twistors and Pertubative Gravity including work (2005) with Z Bern, S Bidder, E Bjerrum-Bohr, H Ita, W Perkins, K Risager From Twistors to Amplitudes 2005.
Perturbative Ultraviolet Calculations in Supergravity Tristan Dennen (NBIA) Based on work with: Bjerrum-Bohr, Monteiro, O’Connell Bern, Davies, Huang,
Amplitudes and Ultraviolet Behavior of Supergravity Z. Bern, J.J. Carrasco, LD, H. Johansson, R. Roiban [PRL 103, (2009)], 1006.???? Lance.
The quantum structure of the type II effective action and UV behavior of maximal supergravity Jorge Russo U. Barcelona – ICREA [Based on work in coll.
Semi-Classical strings as probes of AdS/CFT M. Kruczenski Purdue University Based on: arXiv: R. Roiban, A. Tirziu, A. Tseytlin, M.K. arXiv:
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Extremal Single-charge Small Black holes Aninda Sinha DAMTP, Cambridge University, UK hep-th/ (to appear in CQG) with Nemani Suryanarayana(Perimeter),
Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture V.
1 Multi-loop scattering amplitudes in maximally supersymmetric gauge and gravity theories. Twistors, Strings and Scattering Amplitudes Durham August 24,
Is N=8 Supergravity Finite? Z. Bern, L.D., R. Roiban, hep-th/ Z. Bern, J.J. Carrasco, L.D., H. Johansson, D. Kosower, R. Roiban, hep-th/07mmnnn.
Structure of Amplitudes in Gravity I Lagrangian Formulation of Gravity, Tree amplitudes, Helicity Formalism, Amplitudes in Twistor Space, New techniques.
1 Gravity from Gauge Theory and UV Properties TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A AAA A A AA Amplitudes.
Structure of Amplitudes in Gravity III Symmetries of Loop and Tree amplitudes, No- Triangle Property, Gravity amplitudes from String Theory Playing with.
Heavy quark potential and running coupling in QCD W. Schleifenbaum Advisor: H. Reinhardt University of Tübingen EUROGRADworkshop Todtmoos 2007.
Structure of Amplitudes in Gravity II Unitarity cuts, Loops, Inherited properties from Trees, Symmetries Playing with Gravity - 24 th Nordic Meeting Gronningen.
Results in N=8 Supergravity Emil Bjerrum-Bohr HP 2 Zurich 9/9/06 Harald Ita Warren Perkins Dave Dunbar, Swansea University hep-th/0609??? Kasper Risager.
Beyond Feynman Diagrams Lecture 3 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Unitarity and Factorisation in Quantum Field Theory Zurich Zurich 2008 David Dunbar, Swansea University, Wales, UK VERSUS Unitarity and Factorisation in.
On-Shell Methods in QCD and N=4 Super-Yang-Mills Theory Lance Dixon (CERN & SLAC) DESY Theory Workshop 21 Sept
1 Is a Point-Like Ultraviolet Finite Theory of Quantum Gravity Possible? Is a Point-Like Ultraviolet Finite Theory of Quantum Gravity Possible? Zurich,
1 Ultraviolet Properties of N = 8 Supergravity at Three Loops and Beyond Ultraviolet Properties of N = 8 Supergravity at Three Loops and Beyond Paris,
Superconformal symmetry and higher-derivative Lagrangians Antoine Van Proeyen KU Leuven Mc Gill university, workshop in honour of Marc Grisaru April 19,
Queen Mary, University of London Nov. 9, 2011 Congkao Wen.
New Methods in Computational Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay Higgs Symposium University of Edinburgh January.
SQG4 - Perturbative and Non-Perturbative Aspects of String Theory and Supergravity Marcel Grossmann -- Paris Niels Emil Jannik Bjerrum-Bohr Niels Bohr.
Amplitudes et périodes­ 3-7 December 2012 Niels Emil Jannik Bjerrum-Bohr Niels Bohr International Academy, Niels Bohr Institute Amplitude relations in.
Constraints on renormalization group flows Based on published and unpublished work with A.Dymarsky,Z.Komargodski,S.Theisen.
Anastasia Volovich Brown University Miami, December 2014 Golden, Goncharov, Paulos, Spradlin, Vergu.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
1 Harmony of Scattering Amplitudes: From Gauge Theory to N = 8 Supergravity Strings, June 26, 2009 Zvi Bern, UCLA Overview + results from papers with:
PRIN meeting - Pisa, 17/5/2013 S. Penati 1 A Survey in ABJM: Scattering Amplitudes and Wilson loops Silvia Penati University of Milano-Bicocca and INFN.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
Super Yang Mills Scattering amplitudes at strong coupling Juan Maldacena Based on L. Alday & JM arXiv: [hep-th] & to appear Strings 2007, Madrid.
Scattering Amplitudes in Quantum Field Theory Lance Dixon (CERN & SLAC) EPS HEP July 2011.
On Recent Developments in N=8 Supergravity Renata Kallosh Renata Kallosh EU RTN Varna, September 15, 2008 Stanford university.
1 Superfiniteness of N = 8 Supergravity at Three Loops and Beyond Superfiniteness of N = 8 Supergravity at Three Loops and Beyond Julius Wess Memorial.
B EING F LAT W ITH N O S YMMETRIES arXiv: [hep-th] arXiv:15xx.xxxxx [hep-th] with Xi Dong and Daniel Z. Freedman Yue Zhao SITP, Stanford University.
Gauge Theory, Superstrings and Supermagnets Volker Schomerus SYSY Goettingen 2012.
Finite N Index and Angular Momentum Bound from Gravity “KEK Theory Workshop 2007” Yu Nakayama, 13 th. Mar (University of Tokyo) Based on hep-th/
Unitarity and Amplitudes at Maximal Supersymmetry David A. Kosower with Z. Bern, J.J. Carrasco, M. Czakon, L. Dixon, D. Dunbar, H. Johansson, R. Roiban,
Soft and Collinear Behaviour of Graviton Scattering Amplitudes David Dunbar, Swansea University.
UV structure of N=8 Supergravity Emil Bjerrum-Bohr, IAS Windows on Quantum Gravity 18 th June 08, UCLA Harald Ita, UCLA Warren Perkins Dave Dunbar, Swansea.
Toward the Determination of Effective Action in Superstring Theory and M-Theory Yoshifumi Hyakutake (Osaka Univ.)
The Geometry of Moduli Space and Trace Anomalies. A.Schwimmer (with J.Gomis,P-S.Nazgoul,Z.Komargodski, N.Seiberg,S.Theisen)
Multi-Loop Miracles in N=4 Super-Yang-Mills Theory Z. Bern, L.D., V. Smirnov, hep-th/ F. Cachazo, M. Spradlin, A. Volovich, hep-th/ Z. Bern,
1 Renormalization Group Treatment of Non-renormalizable Interactions Dmitri Kazakov JINR / ITEP Questions: Can one treat non-renormalizable interactions.
Could N=8 Supergravity be a finite theory of quantum gravity? Z. Bern, L.D., R. Roiban, PLB644:265 [hep-th/ ] Z. Bern, J.J. Carrasco, L.D., H. Johansson,
Dmitri Sorokin, INFN Padova Section based on arXiv: with I. Bandos, L. Martucci and M. Tonin VII Round Table Italy-Russia, Dubna, November.
Scattering in Planar N=4 Super-Yang-Mills Theory and the Multi-Regge-Limit Lance Dixon (SLAC) with C. Duhr and J. Pennington, arXiv: ICHEP Melbourne,
Minimal surfaces in AdS 5, Wilson loops and Amplitudes Juan Maldacena.
“Planck 2009” conference Padova May 2009 Facing Dark Energy in SUGRA Collaboration with C. van de Bruck, A. Davis and J. Martin.
A nonperturbative definition of N=4 Super Yang-Mills by the plane wave matrix model Shinji Shimasaki (Osaka U.) In collaboration with T. Ishii (Osaka U.),
From Weak to Strong Coupling at Maximal Supersymmetry David A. Kosower with Z. Bern, M. Czakon, L. Dixon, & V. Smirnov 2007 Itzykson Meeting: Integrability.
Solution of the NLO BFKL Equation (and a strategy for solving the all-order BFKL equation) Yuri Kovchegov The Ohio State University based on arXiv:
Hidden Structures in Field Theory Amplitudes and their Applications 1 Niels Bohr Institute August 12, 2009 Zvi Bern, UCLA TexPoint fonts used in EMF. Read.
1 Harmony of Scattering Amplitudes: From QCD to Gravity Durham UK Christmas Meeting December 20, 2008 Zvi Bern, UCLA.
COUNTERTERMS AND COHOMOLOGY Introduction Superspace NR thms Algebraic renormalisation - counterterms as cocycles - algebraic susy NR thm Superspace cohomology.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Henrik Johansson CERN August 14, 2014 Nordita workshop: Supersymmetric Field Theories Henrik Johansson CERN August 14, 2014 Nordita workshop: Supersymmetric.
On-Shell Methods in QCD and N=4 Super-Yang-Mills Theory
Multi-Loop Amplitudes with Maximal Supersymmetry
Trees in N=8 SUGRA and Loops in N=4 SYM
Complete QCD Amplitudes: Part II of QCD On-Shell Recursion Relations
Is N=8 Supergravity Finite?
Presentation transcript:

Henrik Johansson CERN March 26, 2013 BUDS workshop INFN Frascati Henrik Johansson CERN March 26, 2013 BUDS workshop INFN Frascati , , Based on work with: Zvi Bern, John Joseph Carrasco, Lance Dixon, Michael Douglas, Radu Roiban, Matt von Hippel Towards Determining the UV Behavior of Maximal Supergravity

H. Johansson, Frascati 2013 SUGRA status in one slide After 35 years of supergravity, we can only now make very precise statements about the D=4 ultraviolet structure. No D=4 divergence of pure SG has been found to date. Susy forbids 1,2 loop div., R 2, R 3 c.t. incompatible with susy Pure gravity 1-loop finite, 2-loop divergent Goroff & Sagnotti With matter: 1-loop divergent ‘t Hooft & Veltman Naively susy allows 3-loop div. R 4 N =8 SG and N =4 SG 3-loop finite! N =8 SG: no divergence before 7 loops 7-loop div. in D=4 implies a 5-loop div. in D=24/5 -- calculation in progress! UFinite? N=8 SG

H. Johansson, Frascati 2013 Why is it interesting ? If N =8 SG is perturbatively finite, why is it interesting ? It better be finite for a good reason! Hidden new symmetry, for example Understanding the mechanism might open a host of possibilities Any indication of hidden structures yet? Gravity is a double copy of gauge theories Color-Kinematics: kinematics = Lie algebra Constraints from E-M duality Kallosh,…. Hidden superconformal N=4 SUGRA ? Symmetry? Gravity Bern, Carrasco, HJ Ferrara, Kallosh, Van Proeyen

Henrik Johansson Gauge Theory Analogy Gauge theory in D>4 have same problem as D=4 gravity Non-renormalizable due to dimensionful coupling However, D=5 SYM has a UV completion: (2,0) theory in D=6 Is D=5 SYM perturbatively UV finite ? Douglas; Lambert et al. If yes, how does it work ? If no, what do we need to add ? Solitons, KK modes ? Douglas; Lambert et al. Understanding D=5 SYM might (or might not) give clues to how to understand D=4 gravity. (2,0) theory ? D=5 SYM

H. Johansson, Frascati 2013 Review UV status N=8 SUGRA and N=4 SYM 4pt amplitudes and UV divergences 3,4-loop N=8 SUGRA & N=4 SYM 5-loop nonplanar SYM 6-loop planar D=5 SYM 5pt amplitudes and UV divergences 1,2,3-loop N=8 SUGRA & N=4 SYM Current 5-loop progress Conclusion Outline

H. Johansson, Frascati 2013 UV properties N =8 SG N =8 SG: conventional superspace power counting forbids L=1,2 divergences Deser, Kay, Stelle; Howe and Lindström; Green, Schwarz, Brink; Howe, Stelle; Marcus, Sagnotti Three-loop divergence ruled out by calculation: Bern, Carrasco, Dixon, HJ, Kosower, Roiban, (2007), Bern, Carrasco, Dixon, HJ, Roiban (2008 ) L<7 loop divergences ruled out by counterterm analysis, using E 7(7) symmetry and other methods, but a L=7 divergence is still possible Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove, Kallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more…. In D=4 dimensions: In D>4 dimensions: Through four loops N =8 SG and N =4 SYM diverge in exactly the same dimension: Marcus and Sagnotti; Bern, Dixon, Dunbar, Perelstein, Rozowsky; Bern, Carrasco, Dixon, HJ, Kosower, Roiban

H. Johansson, Frascati 2013 UV divergence trend Plot of critical dimensions of N = 8 SUGRA and N = 4 SYM Known bound for N = 4 Bern, Dixon, Dunbar, Rozowsky, Perelstein; Howe, Stelle current trend for N = 8 If N = 8 div. at L=7 calculations: L = 7 lowest loop order for possible D = 4 divergence Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove Kallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more…. 1-2 loops: Green, Schwarz, Brink; Marcus and Sagnotti 3-5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban 6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel Finite ? Divergent

H. Johansson, Frascati 2013 UV divergence trend Plot of critical dimensions of N = 8 SUGRA and N = 4 SYM Known bound for N = 4 Bern, Dixon, Dunbar, Rozowsky, Perelstein; Howe, Stelle current trend for N = 8 If N = 8 div. at L=7 calculations: L = 7 lowest loop order for possible D = 4 divergence Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove Kallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more…. 1-2 loops: Green, Schwarz, Brink; Marcus and Sagnotti 3-5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban 6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel 26/5 or 24/5 ? Finite ? Divergent

H. Johansson, Frascati 2013 N =8 Amplitude and Counter Term Structure 4pt amplitude form (any dimension) divergence occurs in Counter term D = 8 D = 6 D = 7 D = 5.5 Loop order If amplitude for L  4 has at least 8 derivatives then by dimensional analysis: no divergence before L = 7 ! D = 24/5 ? 5 ? ?

H. Johansson, Frascati 2013 N =8 Amplitude and Counter Term Structure 4pt amplitude form (any dimension) divergence occurs in Counter term D = 8 D = 6 D = 7 D = 5.5 Loop order If amplitude for L  5 has at least 10 derivatives then by dimensional analysis: no divergence before L = 8 ! D = 26/5 ? 5 ? ?

H. Johansson, Frascati 2013 Earliest appearance of N = 8 Divergence 3 loops Conventional superspace power counting Green, Schwarz, Brink (1982) Howe and Stelle (1989) Marcus and Sagnotti (1985) 5 loops Partial analysis of unitarity cuts; If N = 6 harmonic superspace exists; algebraic renormalisation Bern, Dixon, Dunbar, Perelstein, Rozowsky (1998) Howe and Stelle (2003,2009) 6 loops If N = 7 harmonic superspace exists Howe and Stelle (2003) 7 loops If N = 8 harmonic superspace exists; string theory U-duality analysis; lightcone gauge locality arguments; E 7(7) analysis, unique 1/8 BPS candidate Grisaru and Siegel (1982); Green, Russo, Vanhove; Kallosh; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Bossard, Howe, Stelle, Vanhove 8 loops Explicit identification of potential susy invariant counterterm with full non-linear susy Howe and Lindström; Kallosh (1981) 9 loops Assume Berkovits’ superstring non-renormalization theorems can be carried over to N = 8 supergravity Green, Russo, Vanhove (2006) Finite Identified cancellations in multiloop amplitudes; lightcone gauge locality and E 7(7), inherited from hidden N=4 SC gravity Bern, Dixon, Roiban (2006), Kallosh (2009–12), Ferrara, Kallosh, Van Proeyen (2012)

H. Johansson, Frascati , 4, 5, 6-Loop Amplitudes

3-loop N =8 SG & N =4 SYM Color-kinematics dual form: Bern, Carrasco, HJ UV divergent in D=6: Bern, Carrasco, Dixon, HJ, Roiban

4-loops: 85 integral types

H. Johansson, QMUL loops N =4 SYM and N =8 SG Bern, Carrasco, Dixon, HJ, Roiban diagrams Power counting manifest both N =4 and N =8 Both diverge in D=11/2 up to overall factor, divergence same as for N =4 SYM part

H. Johansson, Frascati 2013 N =4 SYM 5-loop Amplitude N =4 SYM important stepping stone to N =8 SG [hep-th] Bern, Carrasco, HJ, Roiban 416 integral topologies: Used maximal cut method Bern, Carrasco, HJ, Kosower Maximal cuts: 410 Next-to-MC: 2473 N 2 MC: 7917 N 3 MC: Unitarity cuts done in D dimensions...integrated UV div. in D=26/5

H. Johansson, Frascati 2013 N =4 SYM 5-loop UV divergence Non-Planar UV divergence in D=26/5: Double traces and single-trace NNLC finite in D=26/5, only single-trace LC and NLC are divergent Vanish! Bern, Carrasco, HJ, Roiban

H. Johansson, Frascati 2013 Testing D=5 intercept Plot of critical dimensions of N = 8 SUGRA and N = 4 SYM Known bound for N = 4 Bern, Dixon, Dunbar, Rozowsky, Perelstein; Howe, Stelle current trend for N = 8 If N = 8 div. at L=7 calculations: L = 7 lowest loop order for possible D = 4 divergence Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove Kallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more…. 1-2 loops: Green, Schwarz, Brink; Marcus and Sagnotti 3-5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban 6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel

H. Johansson, Frascati Loop Planar D=5 SYM 68 planar diagrams Given by dual conformal invariance (up to integer 0,1,-1,2,-2... prefactors) Independently constructed by: Eden, Heslop, Korchemsky, Sokatchev; Bourjaily, DiRe, Shaikh, Spradlin, Volovich Bern, Carrasco, Dixon, Douglas, HJ, von Hippel

6-Loop Planar D=5 SYM The Parking Spot Escalation our secret collaborator…

6-Loop D=5 SYM divergence Using integration by parts identities, div. simplifies to 3 integrals Numerical integration – modified version of FIESTA 1000 node cluster at Stony Brook Result: divergence is nonzero. What cancels this divergence ? Solitons/KK modes ? Douglas; Lambert et al. Bern, Carrasco, Dixon, Douglas, HJ, von Hippel

Divergence to all loop orders ? Bern, Carrasco, Dixon, Douglas, HJ, von Hippel Intriguing pattern of UV divergence in critical dimension of maximal susy YM Accurate to <1% Why do the UV divergences follow this approximate curve? Is it asymptotically exact ?

H. Johansson, Frascati pt N=8 SUGRA calculations

H. Johansson, Frascati 2013 C-K amplitudes at 1 loop Green, Schwarz, Brink (1982) Duality-satisfying loop amplitudes: N=4 SYM: All-plus QCD: N=4 SYM and All-plus QCD: [hep-th] Carrasco, HJ

SYM UV div in D=8: Carrasco, HJ [hep-th] SU(8) violating SG UV div in D=8: SG UV div in D=8: 1-loop 5-pts UV divergences counterterms:

H. Johansson, Frascati loop 5-pts N =4 SYM and N =8 SG The 2-loop 5-point amplitude with Color-Kin. duality N = 8 SG obtained from numerator double copies Carrasco, HJ [hep-th]

2-loop 5-pts UV divergences SYM UV div in D=7: SG UV div in D=7: Carrasco, HJ [hep-th] SU(8) violating SG UV div in D=8:

H. Johansson, Frascati loop 5-point SYM and N =8 SG ( “ ladder-like ” diagrams) Carrasco, HJ (to appear) Non-planar D-dimensional amplitude with manifest color-kinematics duality ( N = 8 SG obtained from squaring the numerators)

H. Johansson, Frascati loop 5-point SYM and N =8 SG some “ Mercedes-like ” diagrams … Carrasco, HJ (to appear)

H. Johansson, Frascati loop 5-point SYM and N =8 SG Carrasco, HJ (to appear) … in total 42 diagrams. For SYM the UV divergent diagrams (in D=6) are very simple: (for SG the UV div. comes from the other diagrams as well)

H. Johansson, Frascati loop 5-pts UV divergences

N =8 SG 5-loop Status Working on reorganizing 5-loop N =4 SYM Bern, Carrasco, HJ, Roiban (in progress) = 752 integral topologies BCJ: 2500 functional Jacobi eqns Relaxing ansatz: Non-manifest crossing symmetry Allow for non-local numerators Gauge variant numerators Relax power counting Allow for triangle diagrams … Once we have integrand, integration will take ~ 1 day: No subdivergences in D=24/5 No IR divergences since D>4, and absence of bubbles No more difficult than IBP:s for N =4 SYM < 1 day If needed, numerical integration ~ few days

SYM SG ? 3 loops, D=6: 4 loops, D=11/2: SYM SG H. Johansson, Frascati 2013 Fortune-telling from pattern 5 loops, D=26/5: related to diagrams in the quartic Casimir

Summary Explicit calculations in N = 8 SUGRA up to four loops show that the power counting exactly follows that of N = 4 SYM -- a finite theory 5 loop calculation in D=24/5 probes the potential 7-loop D=4 counterterm -- will provide critical input to the N = 8 question ! D=5 SYM have a 6-loop UV divergence, showing that the standard perturbative expansion misses some of the (2,0) theory contributions. Color-Kinematics duality allows for gravity calculations for multiloop multipoint amplitudes -- greatly facilitating UV analysis in gravity. Numbers in UV divergences of N =8 SUGRA and N =4 SYM coincide, suggesting a deeper connection between the theories Stay tuned for the 5-loop SUGRA result…