EXTENDED MHD SIMULATIONS: VISION AND STATUS D. D. Schnack and the NIMROD and M3D Teams Center for Extended Magnetohydrodynamic Modeling PSACI/SciDAC.

Slides:



Advertisements
Similar presentations
EXTENDED MHD MODELING: BACKGROUND, STATUS AND VISION
Advertisements

Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Reconnection: Theory and Computation Programs and Plans C. C. Hegna Presented for E. Zweibel University of Wisconsin CMSO Meeting Madison, WI August 4,
Korean Modeling Effort : C2 Code J.M. Park NFRC/ORNL In collaboration with Sun Hee Kim, Ki Min Kim, Hyun-Sun Han, Sang Hee Hong Seoul National University.
17. April 2015 Mitglied der Helmholtz-Gemeinschaft Application of a multiscale transport model for magnetized plasmas in cylindrical configuration Workshop.
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
A Kinetic-Fluid Model for Studying Thermal and Fast Particle Kinetic Effects on MHD Instabilities C. Z. Cheng, N. Gorelenkov and E. Belova Princeton Plasma.
6 th ITPA MHD Topical Group Meeting combined with W60 IEA Workshop on Burning Plasmas Session II MHD Stability and Fast Particle Confinement General scope.
Nonlinear Simulations of ELMs with NIMROD D.P. Brennan Massachussetts Institute of Technology Cambridge, MA S.E. Kruger Tech-X Corp, Boulder, CO A. Pankin,
Effect of sheared flows on neoclassical tearing modes A.Sen 1, D. Chandra 1, P. K. Kaw 1 M.P. Bora 2, S. Kruger 3, J. Ramos 4 1 Institute for Plasma Research,
Physics Analysis for Equilibrium, Stability, and Divertors ARIES Power Plant Studies Charles Kessel, PPPL DOE Peer Review, UCSD August 17, 2000.
GTC Status: Physics Capabilities & Recent Applications Y. Xiao for GTC team UC Irvine.
Modeling of ELM Dynamics for ITER A.Y. PANKIN 1, G. BATEMAN 1, D.P. BRENNAN 2, A.H. KRITZ 1, S. KRUGER 3, P.B. SNYDER 4, and the NIMROD team 1 Lehigh University,
Computer simulations of fast frequency sweeping mode in JT-60U and fishbone instability Y. Todo (NIFS) Y. Shiozaki (Graduate Univ. Advanced Studies) K.
Massively Parallel Magnetohydrodynamics on the Cray XT3 Joshua Breslau and Jin Chen Princeton Plasma Physics Laboratory Cray XT3 Technical Workshop Nashville,
The SWIM Fast MHD Campaign Presented by S. C. Jardin Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ Simulation of Wave Interaction.
Advanced Tokamak Plasmas and the Fusion Ignition Research Experiment Charles Kessel Princeton Plasma Physics Laboratory Spring APS, Philadelphia, 4/5/2003.
SIMULATION OF A HIGH-  DISRUPTION IN DIII-D SHOT #87009 S. E. Kruger and D. D. Schnack Science Applications International Corp. San Diego, CA USA.
Nonlinear Frequency Chirping of Alfven Eigenmode in Toroidal Plasmas Huasen Zhang 1,2 1 Fusion Simulation Center, Peking University, Beijing , China.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
Overview of MHD and extended MHD simulations of fusion plasmas Guo-Yong Fu Princeton Plasma Physics Laboratory Princeton, New Jersey, USA Workshop on ITER.
Hybrid Simulations of Energetic Particle-driven Instabilities in Toroidal Plasmas Guo-Yong Fu In collaboration with J. Breslau, J. Chen, E. Fredrickson,
TH/7-2 Radial Localization of Alfven Eigenmodes and Zonal Field Generation Z. Lin University of California, Irvine Fusion Simulation Center, Peking University.
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
Multiscale issues in modeling magnetic reconnection J. F. Drake University of Maryland IPAM Meeting on Multiscale Problems in Fusion Plasmas January 10,
Discussions and Summary for Session 1 ‘Transport and Confinement in Burning Plasmas’ Yukitoshi MIURA JAERI Naka IEA Large Tokamak Workshop (W60) Burning.
Reconnection rates in Hall MHD and Collisionless plasmas
ARIES-AT Physics Overview presented by S.C. Jardin with input from C. Kessel, T. K. Mau, R. Miller, and the ARIES team US/Japan Workshop on Fusion Power.
Global Stability Issues for a Next Step Burning Plasma Experiment UFA Burning Plasma Workshop Austin, Texas December 11, 2000 S. C. Jardin with input from.
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
Nonlinear interactions between micro-turbulence and macro-scale MHD A. Ishizawa, N. Nakajima, M. Okamoto, J. Ramos* National Institute for Fusion Science.
APS DPP 2006 October Adaptive Extremum Seeking Control of ECCD for NTM Stabilization L. Luo 1, J. Woodby 1, E. Schuster 1 F. D. Halpern 2, G.
Tech-X Corporation1 Boundary Conditions In the NIMROD Code S.E. Kruger Tech-X Corporation D.D. Schnack U.W. - Madison.
Integrated Modeling for Burning Plasmas Workshop (W60) on “Burning Plasma Physics and Simulation 4-5 July 2005, University Campus, Tarragona, Spain Under.
(National Institute for Fusion Science, Japan)
Electron inertial effects & particle acceleration at magnetic X-points Presented by K G McClements 1 Other contributors: A Thyagaraja 1, B Hamilton 2,
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
Kinetic MHD Simulation in Tokamaks H. Naitou, J.-N. Leboeuf †, H. Nagahara, T. Kobayashi, M. Yagi ‡, T. Matsumoto*, S. Tokuda* Joint Meeting of US-Japan.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
1 Stability Studies Plans (FY11) E. Fredrickson, For the NCSX Team NCSX Research Forum Dec. 7, 2006 NCSX.
The influence of non-resonant perturbation fields: Modelling results and Proposals for TEXTOR experiments S. Günter, V. Igochine, K. Lackner, Q. Yu IPP.
Modelling the Neoclassical Tearing Mode
NIMROD Simulations of a DIII-D Plasma Disruption
QAS Design of the DEMO Reactor
Steady State Discharge Modeling for KSTAR C. Kessel Princeton Plasma Physics Laboratory US-Korea Workshop - KSTAR Collaborations, 5/19-20/2004.
Physics Analysis and Flexibility Issues for FIRE NSO PAC-2 Meeting January 17-18, 2001 S. C. Jardin with input from C.Kessel, J.Mandrekas, D.Meade, and.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Discussion Slides S.E. Kruger, J.D. Callen, J. Carlson, C.C. Hegna, E.D. Held, T. Jenkins, J. Ramos, D.D. Schnack, C.R. Sovinec, D.A. Spong ORNL SWIM Meet.
BOUT++ Towards an MHD Simulation of ELMs B. Dudson and H.R. Wilson Department of Physics, University of York M.Umansky and X.Xu Lawrence Livermore National.
Center for Extended MHD Modeling (PI: S. Jardin, PPPL) –Two extensively developed fully 3-D nonlinear MHD codes, NIMROD and M3D formed the basis for further.
PRELIMINARY RESULTS OF SIMULATION OF A SAWTOOTH CRASH IN CDXU D. D. Schnack and S. E. Kruger Center for Energy and Space Science Science Applications International.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
SWIM Meeting Madison, WI 12/4/07 A closure scheme for modeling RF modifications to the fluid equations C. C. Hegna and J. D. Callen University of Wisconsin.
Kinetic-Fluid Model for Modeling Fast Ion Driven Instabilities C. Z. Cheng, N. Gorelenkov and E. Belova Princeton Plasma Physics Laboratory Princeton University.
1 Recent Progress on QPS D. A. Spong, D.J. Strickler, J. F. Lyon, M. J. Cole, B. E. Nelson, A. S. Ware, D. E. Williamson Improved coil design (see recent.
1 ASIPP Sawtooth Stabilization by Barely Trapped Energetic Electrons Produced by ECRH Zhou Deng, Wang Shaojie, Zhang Cheng Institute of Plasma Physics,
Resistive Modes in CDX-U J. Breslau, W. Park. S. Jardin, R. Kaita – PPPL D. Schnack, S. Kruger – SAIC APS-DPP Annual Meeting Albuquerque, NM October 30,
Bootstrap current in quasi-symmetric stellarators Andrew Ware University of Montana Collaborators: D. A. Spong, L. A. Berry, S. P. Hirshman, J. F. Lyon,
TH/7-1Multi-phase Simulation of Alfvén Eigenmodes and Fast Ion Distribution Flattening in DIII-D Experiment Y. Todo (NIFS, SOKENDAI) M. A. Van Zeeland.
6 th ITPA MHD Topical Group Meeting combined with W60 IEA Workshop on Burning Plasmas Summary Session II MHD Stability and Fast Particle Confinement chaired.
Energetic ion excited long-lasting “sword” modes in tokamak plasmas with low magnetic shear Speaker:RuiBin Zhang Advisor:Xiaogang Wang School of Physics,
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
U NIVERSITY OF S CIENCE AND T ECHNOLOGY OF C HINA Influence of ion orbit width on threshold of neoclassical tearing modes Huishan Cai 1, Ding Li 2, Jintao.
Unstructured Meshing Tools for Fusion Plasma Simulations
Field-Particle Correlation Experiments on DIII-D Frontiers Science Proposal Under weakly collisional conditions, collisionless interactions between electromagnetic.
J. Menard for the MHD Science Focus Group Tuesday, November 22, 2005
Integrated Modeling Approach and Plans
Influence of energetic ions on neoclassical tearing modes
20th IAEA Fusion Energy Conference,
Integrated Modeling for Burning Plasmas
Presentation transcript:

EXTENDED MHD SIMULATIONS: VISION AND STATUS D. D. Schnack and the NIMROD and M3D Teams Center for Extended Magnetohydrodynamic Modeling PSACI/SciDAC

MODERN TOKAMAKS ARE RICH IN MHD ACTIVITY 1/1 sawteeth 3/2 Island (Cause??) 2/1 wall locking Disruption What is special about 2250 msec? What is the nature of the initial 3/2 island? Can this behavior be understood? Can this behavior be predicted? Example: DIII-D shot NTM? Dynamics are: Long time scale Finite amplitude Electromagnetic 3-D

IMPORTANCE OF PREDICTIVE MODELING Cost of next generation of fusion experiments estimated to be at least several billion $$ Cost proportional to volume: $ ~ V Power density proportional to square of max. pressure: P/V ~ p 2 max => $ ~ 1/ p 2 max for fixed P and B (engineering constraints) Physics uncertainties limit max. pressure to ~ 2/3 theoretical p max Uncertainties in nonlinear physics account for ~ 1/2 the cost of advanced fusion experiment! Predictive fluid modeling with realistic parameters has high leverage to remove this uncertainty

MODELING REQUIREMENTS Slow evolution** Nonlinear, multidimensional, electromagnetic fluid model required Plasma shaping Realistic geometry required High temperature Realistic S required Low collisionality** Extensions to resistive MHD required Strong magnetic field Highly anisotropic transport required Resistive wall Non-ideal boundary conditions required ** Integrated modeling required

INTEGRATED MODELING IS REQUIRED Non-local kinetic physics affects long time scale evolution –Transport coefficients –Neo-classical effects (bootstrap current, NTMs) –Energetic particles (TAEs) Long time scale profile evolution is affected by MHD physics –Relaxation of profiles –Profiles affect kinetic physics Fluid model only computationally practical approach –Multi-dimensional, electromagnetic Effects of kinetic (sub grid scale) physics must be synthesized into MHD models** –Extensions to Ohms law (2-fluid models) –Subcycling/code coupling –Theoretical models (closures), possibly heuristic Effects of MHD must be synthesized into transport models Predictions must be validated with experimental data ** For Alfvénic and tearing mode time scales, this is called Extended MHD

INTEGRATED MODELING HAS 3 COMPONENTS Algorithm and code development –Time integration methods for problems with extreme separation of time scales –Spatial representation Simultaneously describe large and small scales Extreme anisotropy Theoretical model development –Closures to fluid equations –Synthesis of results from sub grid scale computations into analytic or heuristic models –Tightly coupled with computational effort Model validation –Validation of algorithms –Calibration of models with data All 3 components must be enabled for an effective program

I. ALGORITHM AND CODE DEVELOPMENT Fusion MHD-like problems are among the most challenging in computational physics –Extreme separation of time and spatial scales (large S) –Extreme anisotropy Need to develop, test and deploy algorithms appropriate for these problems –Implicit methods, non-cartesian grids, FFTs –Methods appropriate for strong flows, low density regions Is there a better way? Boundary conditions –Vacuums, resistive walls, coils, wall stresses, etc. Code coupling and steering –Efficient integration of disparate models into a single computation –Run time decision making

II. THEORETICAL MODEL DEVELOPMENT We dont know what form of the fluid equations to solve! –Fluid model possibly valid only perpendicular to magnetic field –How to incorporate important parallel physics in nearly collisionless regime? Kinetic, non-local processes affect MHD evolution Require computationally tractable forms for these effects –Kinetic effects are non-local –Fluid models are local –Formulation in configuration space (r,t), not Fourier space (,k) Closures –Analytic expressions based on moments of kinetic equations –Synthesis of results from sub grid scale kinetic studies into heuristic models Subcycling of physics modules –Particle ( f) methods OK for ions (minority species?) Impractical for electrons - analytic or heuristic formulation required

III. MODEL VALIDATION Validation with experimental data is an essential part of attaining a predictive capability –Algorithms –Analytic components Some requirements for successful validation capability: –Common structure, handling, and analysis for experimental and simulation data –Ability to view experimental and simulation data In the same way –Ability to transport and store large amounts of 3-D time dependent data –Synthetic diagnostics

ENABLING COMPUTER SCIENCE TECHNOLOGIES Largest, fastest computers! –But intermediate computational resources often neglected, and… –The computers will never be large or fast enough! Algorithms –Parallel linear algebra –Gridding, adaptive and otherwise Data structure and storage –Adequate storage devices –Common treatment of experimental and simulation data –Common tools for data analysis Communication and networking –Fast data transfer between simulation site and storage site –Efficient worldwide access to data –Collaborative tools –Dealing with firewalls Advanced graphics and animation

VISION: VDE EVOLUTION EQUILIBRIUM RECONSTRUCTION TRANSPORT CODE RF CODE: SOURCES GK CODE: TRANSPORT COEFFICIENTS LINEAR STABILITY CODE STABLE? UNSTABLE? EDGE CODE EXPERIMENTAL DATA NONLINEAR EXTENDED MHD CODE CURRENTS IN SHELL STRESS ANALYSIS CODE DESIGN SIMULATION DATA COMPARISON

VISION: SAWTOOTH CYCLE EQUILIBRIUM RECONSTRUCTION EXPERIMENTAL DATA TRANSPORT MODULE GK CODE: TRANSPORT COEFFICIENTS LINEAR STABILITY CODE WITH ENERGETIC PARTICLES STABLE? UNSTABLE? NONLINEAR EXTENDED MHD CODE SIMULATION DATA ENERGETIC PARTICLE MODULE RELAXED PROFILES COMPARISON

STATUS: ENERGETIC PARTICLE EFFECTS IN MHD Effect of energetic particle population on MHD mode Subcycling of energetic particle module within MHD codes M3D agrees well with NOVA2 in the linear regime Energetic particles are being incorporated into NIMROD NIMROD/M3D linear and nonlinear benchmarking expected by APS

STATUS: NEOCLASSICAL TEARING MODE Nonlinear simulation with NIMROD code Look for 3/2 neoclassical mode driven by 1/1 sawtooth Use PFD (analytic) closure Threshold island width ~ 2-4 cm (uncertainty in W 3/2 ~ cm in experiment Still need larger S, more anisotropy Cannot cheat on parameters! 1/1 2/1 3/2 DIII-D shot 2250 msec

SUMMARY Predictive simulation capability has 3 components –Code and algorithm development –Tightly coupled theoretical effort –Validation of models by comparison with experiment Fundamental model should be multi-dimensional, nonlinear, electromagnetic, and fluid Integration required for: –Coupling algorithms for disparate physical problems –Theoretical synthesis of results from different models –Efficient communication and data manipulation Progress is being made with Extended MHD –Integration of energetic ion modules into 3-D MHD –Computationally tractable closures –Resistive wall modules Need to bring a broader range of algorithms and codes to bear for overall fusion problem