DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging.

Slides:



Advertisements
Similar presentations
Dynamic Causal Modelling (DCM) for fMRI
Advertisements

J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France Bayesian inference.
Bayesian inference Lee Harrison York Neuroimaging Centre 01 / 05 / 2009.
Dynamic causal Modelling for evoked responses Stefan Kiebel Wellcome Trust Centre for Neuroimaging UCL.
Bayesian models for fMRI data
DCM: Advanced Topics Klaas Enno Stephan Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering, University of Zurich & ETH Zurich.
DCM: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical Research in Economics University of Zurich.
Bayesian models for fMRI data
DCM: Advanced topics Klaas Enno Stephan SPM Course Zurich
Methods & Models for fMRI data analysis 17 December 2008
Bayesian models for fMRI data Methods & models for fMRI data analysis 06 May 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
DCM: Advanced issues Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical Research in Economics University of Zurich.
DCM: Advanced issues Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical Research in Economics University of Zurich.
DCM: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical Research in Economics University of Zurich.
DCM: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical Research in Economics University of Zurich.
DCM: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical Research in Economics University of Zurich.
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK Institute of Empirical Research in Economics, Zurich, Switzerland Bayesian inference.
Group analyses of fMRI data Methods & models for fMRI data analysis 26 November 2008 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
DCM: Advanced topics Rosalyn Moran Wellcome Trust Centre for Neuroimaging Institute of Neurology University College London With thanks to the FIL Methods.
DYNAMIC CAUSAL MODELLING FOR fMRI Theory and Practice
J. Daunizeau Motivation, Brain and Behaviour group, ICM, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Dynamic Causal Modelling for.
Dynamic Causal Modelling THEORY SPM Course FIL, London October 2009 Hanneke den Ouden Donders Centre for Cognitive Neuroimaging Radboud University.
Dynamic Causal Modelling
DCM Advanced, Part II Will Penny (Klaas Stephan) Wellcome Trust Centre for Neuroimaging Institute of Neurology University College London SPM Course 2014.
DCM: Advanced topics Klaas Enno Stephan Zurich SPM Course 2014
Dynamic Causal Modelling (DCM) for fMRI
Dynamic Causal Modelling (DCM): Theory Demis Hassabis & Hanneke den Ouden Thanks to Klaas Enno Stephan Functional Imaging Lab Wellcome Dept. of Imaging.
Dynamic Causal Modelling (DCM) for fMRI
SPM Course Zurich, February 2015 Group Analyses Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London With many thanks to.
DCM for ERPs/EFPs Clare Palmer & Elina Jacobs Expert: Dimitris Pinotsis.
DCM for fMRI – Advanced topics Klaas Enno Stephan.
J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.
Dynamic Causal Modelling Advanced Topics SPM Course (fMRI), May 2015 Peter Zeidman Wellcome Trust Centre for Neuroimaging University College London.
Dynamic Causal Modelling for EEG and MEG
Dynamic Causal Modelling (DCM) Marta I. Garrido Thanks to: Karl J. Friston, Klaas E. Stephan, Andre C. Marreiros, Stefan J. Kiebel,
Dynamic Causal Modelling Introduction SPM Course (fMRI), October 2015 Peter Zeidman Wellcome Trust Centre for Neuroimaging University College London.
Bayesian Model Comparison Will Penny London-Marseille Joint Meeting, Institut de Neurosciences Cognitive de la Mediterranee, Marseille, September 28-29,
Dynamic Causal Modelling for fMRI
Dynamic Causal Model for evoked responses in MEG/EEG Rosalyn Moran.
DCM: Advanced Topics Klaas Enno Stephan Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering University of Zurich & Swiss Federal.
DCM: Advanced issues Klaas Enno Stephan Centre for the Study of Social & Neural Systems Institute for Empirical Research in Economics University of Zurich.
Bayesian inference Lee Harrison York Neuroimaging Centre 23 / 10 / 2009.
Dynamic Causal Models Will Penny Olivier David, Karl Friston, Lee Harrison, Andrea Mechelli, Klaas Stephan Mathematics in Brain Imaging, IPAM, UCLA, USA,
Bayesian Inference in SPM2 Will Penny K. Friston, J. Ashburner, J.-B. Poline, R. Henson, S. Kiebel, D. Glaser Wellcome Department of Imaging Neuroscience,
Bayesian selection of dynamic causal models for fMRI Will Penny Olivier David, Karl Friston, Lee Harrison, Andrea Mechelli, Klaas Stephan The brain as.
Dynamic Causal Models Will Penny Olivier David, Karl Friston, Lee Harrison, Stefan Kiebel, Andrea Mechelli, Klaas Stephan MultiModal Brain Imaging, Copenhagen,
Bayesian Model Selection and Averaging SPM for MEG/EEG course Peter Zeidman 17 th May 2016, 16:15-17:00.
Group Analyses Guillaume Flandin SPM Course London, October 2016
DCM: Advanced Topics Klaas Enno Stephan SPM Course FIL London
5th March 2008 Andreina Mendez Stephanie Burnett
Dynamic Causal Modeling of Endogenous Fluctuations
University of Zurich, February 2011
Effective Connectivity
Dynamic Causal Modelling (DCM): Theory
Dynamic Causal Model for evoked responses in M/EEG Rosalyn Moran.
DCM: Advanced issues Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical Research in Economics University of.
Dynamic Causal Modelling
SPM2: Modelling and Inference
Dynamic Causal Modelling for M/EEG
Dynamic Causal Modelling
Bayesian Methods in Brain Imaging
CRIS Workshop: Computational Neuroscience and Bayesian Modelling
Effective Connectivity
Bayesian inference J. Daunizeau
M/EEG Statistical Analysis & Source Localization
DCM for fMRI – Advanced Topics
Bayesian Inference in SPM2
Wellcome Centre for Neuroimaging, UCL, UK.
Will Penny Wellcome Trust Centre for Neuroimaging,
Bayesian Model Selection and Averaging
Presentation transcript:

DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging University College London SPM Course, London 13 May 2011

Neural state equation: Electromagnetic forward model: neural activity  EEG MEG LFP Dynamic Causal Modeling (DCM) simple neuronal model complicated forward model complicated neuronal model simple forward model fMRI EEG/MEG inputs Hemodynamic forward model: neural activity  BOLD

Overview Bayesian model selection (BMS) Neurocomputational models: Embedding computational models in DCMs Integrating tractography and DCM

inference on model structure or inference on model parameters? inference on individual models or model space partition? comparison of model families using FFX or RFX BMS optimal model structure assumed to be identical across subjects? FFX BMS RFX BMS yesno inference on parameters of an optimal model or parameters of all models? BMA definition of model space FFX analysis of parameter estimates (e.g. BPA) FFX analysis of parameter estimates (e.g. BPA) RFX analysis of parameter estimates (e.g. t-test, ANOVA) RFX analysis of parameter estimates (e.g. t-test, ANOVA) optimal model structure assumed to be identical across subjects? FFX BMS yesno RFX BMS Stephan et al. 2010, NeuroImage

Model comparison and selection Given competing hypotheses on structure & functional mechanisms of a system, which model is the best? For which model m does p(y|m) become maximal? Which model represents the best balance between model fit and model complexity? Pitt & Miyung (2002) TICS

Model evidence: Various approximations, e.g.: -negative free energy, AIC, BIC Bayesian model selection (BMS) accounts for both accuracy and complexity of the model allows for inference about structure (generalisability) of the model all possible datasets y p(y|m) Gharamani, 2004 McKay 1992, Neural Comput. Penny et al. 2004a, NeuroImage

Logarithm is a monotonic function Maximizing log model evidence = Maximizing model evidence In SPM2 & SPM5, interface offers 2 approximations: Akaike Information Criterion: Bayesian Information Criterion: Log model evidence = balance between fit and complexity Approximations to the model evidence in DCM No. of parameters No. of data points AIC and BIC only take into account the number of parameters, but not the flexibility they provide (prior variance) nor their interdependencies.

The (negative) free energy approximation Under Gaussian assumptions about the posterior (Laplace approximation), the negative free energy F is a lower bound on the log model evidence: F can also be written as the difference between fit and complexity:

The complexity term in F In contrast to AIC & BIC, the complexity term of the negative free energy F accounts for parameter interdependencies. The complexity term of F is higher –the more independent the prior parameters (  effective DFs) –the more dependent the posterior parameters –the more the posterior mean deviates from the prior mean NB: Since SPM8, only F for is used for model selection !

Bayes factors positive value, [0;  [ But: the log evidence is just some number – not very intuitive! A more intuitive interpretation of model comparisons is made possible by Bayes factors: To compare two models, we could just compare their log evidences. B 12 p(m 1 |y)Evidence 1 to %weak 3 to %positive 20 to %strong  150  99% Very strong Kass & Raftery classification: Kass & Raftery 1995, J. Am. Stat. Assoc.

V1 V5 stim PPC M2 attention V1 V5 stim PPC M1 attention V1 V5 stim PPC M3 attention V1 V5 stim PPC M4 attention BF  2966  F = M2 better than M1 BF  12  F = M3 better than M2 BF  23  F = M4 better than M3 M1 M2 M3 M4 BMS in SPM8: an example Stephan et al. 2008, NeuroImage

Fixed effects BMS at group level Group Bayes factor (GBF) for 1...K subjects: Average Bayes factor (ABF): Problems: -blind with regard to group heterogeneity -sensitive to outliers

Random effects BMS for heterogeneous groups Dirichlet parameters  = “occurrences” of models in the population Dirichlet distribution of model probabilities r Multinomial distribution of model labels m Measured data y Model inversion by Variational Bayes (VB) or MCMC Stephan et al. 2009a, NeuroImage Penny et al. 2010, PLoS Comp. Biol.

MOG LG RVF stim. LVF stim. FG LD|RVF LD|LVF LD MOG LG RVF stim. LVF stim. FG LD LD|RVFLD|LVF MOG m2m2 m1m1 m1m1 m2m2 Data:Stephan et al. 2003, Science Models:Stephan et al. 2007, J. Neurosci.

m1m1 m2m2 Stephan et al. 2009a, NeuroImage

Model space partitioning: comparing model families m1m1 m2m2 m1m1 m2m2 Stephan et al. 2009, NeuroImage

Comparing model families – a second example data from Leff et al. 2008, J. Neurosci one driving input, one modulatory input 2 6 = 64 possible modulations 2 3 – 1 input patterns 7  64 = 448 models integrate out uncertainty about modulatory patterns and ask where auditory input enters Penny et al. 2010, PLoS Comput. Biol.

Bayesian Model Averaging (BMA) abandons dependence of parameter inference on a single model computes average of each parameter, weighted by posterior model probabilities represents a particularly useful alternative –when none of the models (or model subspaces) considered clearly outperforms all others –when comparing groups for which the optimal model differs NB: p(m|y 1..N ) can be obtained by either FFX or RFX BMS Penny et al. 2010, PLoS Comput. Biol.

BMS for large model spaces for less constrained model spaces, search methods are needed fast model scoring via the Savage-Dickey density ratio: Number of models number of nodes assuming reciprocal connections Friston et al. 2011, NeuroImage Friston & Penny 2011, NeuroImage

BMS for large model spaces empirical example: comparing all 32,768 variants of a 6-region model (under the constraint of reciprocal connections) Friston et al. 2011, NeuroImage x Log-posterior model log-probability x Model posterior model probability MAP connections (full) MAP connections (sparse)

Overview Bayesian model selection (BMS) Neurocomputational models: Embedding computational models in DCMs Integrating tractography and DCM

Learning of dynamic audio-visual associations CS Response Time (ms) ± 650 or Target StimulusConditioning Stimulus or TS p(face) trial CS 1 2 den Ouden et al. 2010, J. Neurosci.

Explaining RTs by different learning models Trial p(F) True Bayes Vol HMM fixed HMM learn RW Bayesian model selection: hierarchical Bayesian model performs best 5 alternative learning models: categorical probabilities hierarchical Bayesian learner Rescorla-Wagner Hidden Markov models (2 variants) RT (ms) p(outcome) Reaction times den Ouden et al. 2010, J. Neurosci.

Hierarchical Bayesian learning model observed events probabilistic association volatility k v t-1 vtvt rtrt r t+1 utut u t+1 Behrens et al. 2007, Nat. Neurosci Trial p(F)

PutamenPremotor cortex Stimulus-independent prediction error p < 0.05 (SVC ) p < 0.05 (cluster-level whole- brain corrected) p(F) p(H) BOLD resp. (a.u.) p(F)p(H) BOLD resp. (a.u.) den Ouden et al. 2010, J. Neurosci.

Prediction error (PE) activity in the putamen PE during reinforcement learning PE during incidental sensory learning O'Doherty et al. 2004, Science den Ouden et al. 2009, Cerebral Cortex According to current learning theories (e.g., free energy principle): synaptic plasticity during learning = PE dependent changes in connectivity According to current learning theories (e.g., free energy principle): synaptic plasticity during learning = PE dependent changes in connectivity

Plasticity of visuo-motor connections Modulation of visuo- motor connections by striatal prediction error activity Influence of visual areas on premotor cortex: –stronger for surprising stimuli –weaker for expected stimuli den Ouden et al. 2010, J. Neurosci. PPAFFA PMd Hierarchical Bayesian learning model PUT p = p = 0.017

Prediction error in PMd: cause or effect? Model 1Model 2 den Ouden et al. 2010, J. Neurosci. model 1 model 2

Overview Bayesian model selection (BMS) Neurocomputational models: Embedding computational models in DCMs Integrating tractography and DCM

Diffusion-weighted imaging Parker & Alexander, 2005, Phil. Trans. B

Probabilistic tractography: Kaden et al. 2007, NeuroImage computes local fibre orientation density by spherical deconvolution of the diffusion-weighted signal estimates the spatial probability distribution of connectivity from given seed regions anatomical connectivity = proportion of fibre pathways originating in a specific source region that intersect a target region If the area or volume of the source region approaches a point, this measure reduces to method by Behrens et al. (2003)

R2R2 R1R1 R2R2 R1R1 low probability of anatomical connection  small prior variance of effective connectivity parameter high probability of anatomical connection  large prior variance of effective connectivity parameter Integration of tractography and DCM Stephan, Tittgemeyer et al. 2009, NeuroImage

LG FG  DCM LG left LG right FG right FG left  anatomical connectivity  probabilistic tractography Proof of concept study  connection- specific priors for coupling parameters Stephan, Tittgemeyer et al. 2009, NeuroImage

Connection-specific prior variance  as a function of anatomical connection probability  64 different mappings by systematic search across hyper- parameters  and  yields anatomically informed (intuitive and counterintuitive) and uninformed priors

Models with anatomically informed priors (of an intuitive form)

Models with anatomically informed priors (of an intuitive form) were clearly superior than anatomically uninformed ones: Bayes Factor >10 9

Methods papers: DCM for fMRI and BMS – part 1 Chumbley JR, Friston KJ, Fearn T, Kiebel SJ (2007) A Metropolis-Hastings algorithm for dynamic causal models. Neuroimage 38: Daunizeau J, Friston KJ, Kiebel SJ (2009) Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica, D 238, 2089–2118. Daunizeau J, David, O, Stephan KE (2011) Dynamic Causal Modelling: A critical review of the biophysical and statistical foundations. NeuroImage, in press. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19: Friston KJ, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W (2007) Variational free energy and the Laplace approximation. NeuroImage 34: Friston KJ, Stephan KE, Li B, Daunizeau J (2010) Generalised filtering. Mathematical Problems in Engineering 2010: Friston KJ, Li B, Daunizeau J, Stephan KE (2011) Network discovery with DCM. NeuroImage 56: Friston KJ, Penny WD (2011) Post hoc model selection. NeuroImage, in press. Kasess CH, Stephan KE, Weissenbacher A, Pezawas L, Moser E, Windischberger C (2010) Multi-Subject Analyses with Dynamic Causal Modeling. NeuroImage 49: Kiebel SJ, Kloppel S, Weiskopf N, Friston KJ (2007) Dynamic causal modeling: a generative model of slice timing in fMRI. NeuroImage 34: Li B, Daunizeau J, Stephan KE, Penny WD, Friston KJ (2011). Stochastic DCM and generalised filtering. NeuroImage, in press. Marreiros AC, Kiebel SJ, Friston KJ (2008) Dynamic causal modelling for fMRI: a two-state model. NeuroImage 39:

Methods papers: DCM for fMRI and BMS – part 2 Penny WD, Stephan KE, Mechelli A, Friston KJ (2004a) Comparing dynamic causal models. NeuroImage 22: Penny WD, Stephan KE, Mechelli A, Friston KJ (2004b) Modelling functional integration: a comparison of structural equation and dynamic causal models. NeuroImage 23 Suppl 1:S Penny WD, Stephan KE, Daunizeau J, Joao M, Friston K, Schofield T, Leff AP (2010) Comparing Families of Dynamic Causal Models. PLoS Computational Biology 6: e Stephan KE, Harrison LM, Penny WD, Friston KJ (2004) Biophysical models of fMRI responses. Curr Opin Neurobiol 14: Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. NeuroImage 38: Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007) Dynamic causal models of neural system dynamics: current state and future extensions. J Biosci 32: Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. NeuroImage 38: Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HE, Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for fMRI. NeuroImage 42: Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009a) Bayesian model selection for group studies. NeuroImage 46: Stephan KE, Tittgemeyer M, Knösche TR, Moran RJ, Friston KJ (2009b) Tractography-based priors for dynamic causal models. NeuroImage 47: Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ (2010) Ten simple rules for Dynamic Causal Modelling. NeuroImage 49:

Thank you