1 Lossless DNA Microarray Image Compression Source: Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, Vol. 2, Nov. 2003, pp. 1501-1504.

Slides:



Advertisements
Similar presentations
Transform-domain Wyner-Ziv Codec for Video 教師 : 楊士萱 老師 學生 : 李桐照 同學.
Advertisements

QR Code Recognition Based On Image Processing
多媒體網路安全實驗室 Source:International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH- MSP),2010 Sixth. Authors:Hsiang-Cheh.
1 Reversible image hiding scheme using predictive coding and histogram shifting Source: Signal Processing, vol. 89, no. 6, June 2009, pp Author:
{ Fast Disparity Estimation Using Spatio- temporal Correlation of Disparity Field for Multiview Video Coding Wei Zhu, Xiang Tian, Fan Zhou and Yaowu Chen.
指導教授:陳淑媛 學生:李宗叡 李卿輔.  利用下列三種方法 (Edge Detection 、 Local Binary Pattern 、 Structured Local Edge Pattern) 來判斷是否為場景變換,以方便使用者來 找出所要的片段。
Stat_chi21 類別資料 (Categorical data) 一種質性資料, 其觀察值可歸類於數個不相交的項目內, 例 : 性別, 滿意度, …, 一般以各項的統計次數表現. 分析此種資料,通常用卡方檢定 類別資料分析 卡方檢定 卡方檢定基本理論 一個含有 k 項的試驗,設 p i.
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
空間域之影像強化 3.1 背景介紹 3.2 基礎灰階值轉換 3.3 以灰階統計圖為基礎之處理 3.4 算術與邏輯運算 3.5 基礎空間域濾波
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
Distributed Video Coding. Outline Distributed video coding Lossless compression Lossy compression Low complexity video encoding Distributed image coding.
1-6 動畫的文件屬性 舞台是動畫實際播放的畫面, 所以舞台的大 小與長寬比例對將來動畫的呈現有很大的 影響。 Flash 預設的舞台尺寸是 550 Pixels × 400 Pixels, 背景為白色, 如果要更改舞台大小與 背景色, 請執行『修改 / 文件』命令, 開啟文 件屬性 (Document.
資料結構實習-一 參數傳遞.
Fractal Image Compression Lossy Looking for “local” similarities PIFS -- Partitioned Iteration Function system High compression ratio and high quality.
&5 二因子實驗設計 二因子無交互作用 &Four DOE Class_90a.
1/17 A Study on Separation between Acoustic Models and Its Application Author : Yu Tsao, Jinyu Li, Chin-Hui Lee Professor : 陳嘉平 Reporter : 許峰閤.
(r, n)-Threshold Image Secret Sharing Methods with Small Shadow Images Xiaofeng Wang, Zhen Li, Xiaoni Zhang, Shangping Wang Xi'an University of Technology,
A Concealment Method for Shape Information in MPEG-4 Coded Video Sequences Shahram Shirani, Berna Erol, and Faouzi Kossentini IEEE TRANSACTIONS ON MULTIMEDIA,
國立屏東商業技術學院 資訊工程系 ( 所 ) 多媒體技術發展實驗室 Laboratory of Multimedia Technology Development Department of Computer Science and Information Engineering Nation Pingtung.
1 Hiding Data in Images by Simple LSB Substitution Source: Pattern Recognition, Vol. 37, pp , 2004 Authors: Chi-Kwong Chan and L.M. Cheng Speaker:
1 Iterative Multimodel Subimage Binarization for Handwritten Character Segmentation Author: Amer Dawoud and Mohamed S. Kamel Source: IEEE TRANSACTIONS.
1 A Combined Approach to Integrity Protection and Verification of Palette Images Using Fragile Watermarks and Digital Signatures Source: IEICE TRANS. On.
REVERSIBLE AND HIGH- CAPACITY DATA HIDING IN MEDICAL IMAGES 報告學生:翁偉傑 1 Published in IET Image Processing Received on 25th June 2008 Revised on 15th June.
Improvements to the JPEG-LS prediction scheme Authors: S. Bedi, E. A. Edirisinghe, and G. Grecos Source : Image and Vision Computing. Vol. 22, No. 1, 2004,
1 A Gradient Based Predictive Coding for Lossless Image Compression Source: IEICE Transactions on Information and Systems, Vol. E89-D, No. 7, July 2006.
Reversible image hiding scheme using predictive coding and histogram shifting Source: Authors: Reporter: Date: Signal Processing, Vol.89, Issue 6, pp ,
Just Noticeable Difference Estimation For Images with Structural Uncertainty WU Jinjian Xidian University.
1 Source: Journal of Chemical Information & Computer Sciences, 2003, vol.43, pp Authors: K. Kaczmarek, B. Walczak, S. de Jong, and B. G. M. Vandeginste.
1 Information Hiding Based on Search Order Coding for VQ Indices Source: Pattern Recognition Letters, Vol.25, 2004, pp.1253 – 1261 Authors: Chin-Chen Chang,
1 Proposal of Service System for Ubiquitous Learning System on Adaptive Instructional System 2009 International Conference on Computational Science and.
A New Operating Tool for Coding in Lossless Image Compression Radu Rădescu University POLITEHNICA of Bucharest, Faculty of Electronics, Telecommunications.
1 A JPEG-LS Based Lossless/Lossy Compression Method for Two-Dimensional Electrophoresis Images Source: 2003 International Conference on Informatics, Cybernetics,
1 Biometric template selection and update: a case study in fingerprints Source:Pattern Recognition, Vol. 37, 2004, pp Authors: Umut Uludag, Arun.
Blind image data hiding based on self reference Source : Pattern Recognition Letters, Vol. 25, Aug. 2004, pp Authors: Yulin Wang and Alan Pearmain.
Visual Cryptography for Gray-Level Images by Dithering Techniques
Low Power Huffman Coding for High Performance Data Transmission Chiu-Yi Chen,Yu-Ting Pai, Shanq-Jang Ruan, International Conference on, ICHIT '06,
1 Block Truncation Coding Using Pattern Fitting Source: Pattern Recognition, vol.37, 2004, pp Authors: Bibhas Chandra Dhara, Bhabatosh Chanda.
多媒體網路安全實驗室 Source: IEICE Trans. Fundamentals, Vol. E90-A, No. 4, April 2007, pp Authors:Hong Lin Jin, Masaaki Fujiyoshi, Hitoshi Kiya Speaker:Cheng.
1 Competitive fuzzy edge detection Source: Forensic Science International 155 (2005) 35–50 Authors: Che-Yen Wen*, Jing-Yue Yao Reporter : 黃 宇 睿 Teacher.
1 LSB Matching Revisited Source: IEEE Signal Processing Letters (Accepted for future publication) Authors: Jarno Mielikainen Speaker: Chia-Chun Wu ( 吳佳駿.
1 Reversible visible watermarking and lossless recovery of original images Source: IEEE transactions on circuits and systems for video technology, vol.
NCHU1 The LOCO-I Lossless image Compression Algorithm: Principles and Standardization into JPEG-LS Authors: M. J. Weinberger, G. Seroussi, G. Sapiro Source.
1 Reversible Watermark Using the Difference Expansion of a Generalized Integer Transform Source : IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 8,
Computer Sciences Department1. 2 Data Compression and techniques.
1 Security of fragile watermarking scheme for image authentication Authors: K. C. Liao, W. B. Lee, and C. W. Liao Source: The Imaging Science Journal,
Efficient Huffman Decoding Aggarwal, M. and Narayan, A., International Conference on Image Processing, vol. 1, pp. 936 – 939, 2000 Presenter :Yu-Cheng.
Detecting and Locating Human Eyes in Face Images Based on Progressive Thresholding Reporter: Kai-Lin Yang Date:2012/01/06 Authors: IEEE International Conference.
Authors: Hung-Yu, Chi-Sung Laih
Source: Pattern Recognition, 37(5), P , 2004
Image segmentation using GMM
Source: The Journal of Systems and Software, Volume 67, Issue 2, pp ,
Face recognition using improved local texture pattern
Lossy Compression of DNA Microarray Images
Source : Signal Processing, Volume 133, April 2017, Pages
Centrality Bias Measure for High Density QR Code Module Recognition
第 六 章 BTC與中國書法壓縮 6-.
True Motion Estimation Techniques Part I
Chair Professor Chin-Chen Chang Feng Chia University
An Algorithm for Compression of Bilevel Images
Data hiding method using image interpolation
Source: Signal Processing: Image Communication 16 (2001) pp
New Framework for Reversible Data Hiding in Encrypted Domain
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
Source: IEEE Transactions on Circuits and Systems,
An Iterative Method for Lossless Data Embedding in BMP Images
Source: IEEE Access. (2019/05/13). DOI: /ACCESS
An Image Quality Evaluation Method Based on Digital Watermarking
Lossless Data Hiding in the Spatial Domain for High Quality Images
Presentation transcript:

1 Lossless DNA Microarray Image Compression Source: Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, Vol. 2, Nov. 2003, pp Authors: N. Faramarzpour, S. Shirani and J. Bondy Speaker: Chia-Chun Wu ( 吳佳駿 ) Date: 2005/05/13

2 Outline 1. Introduction 2. Spiral path 3. Proposed method 4. Experimental results 5. Conclusions 6. Comments

3 1. Introduction Microarray images are usually massive in size.  about 30MBytes or more They propose the new concept of spiral path  which is an innovative tool for spatial scanning of images

4 2. Spiral path The idea is to convert the 2D structure of an image into a 1D sequence  which can scan the image in a highly correlated manner while preserving its spatial continuity It can be used for spatial scanning of any image  it is more useful for images with circular, or central behavior

5 2. Spiral path Spiral path (a) spiral sequence (b) and its differential sequence (c) (a) (b) (c)

6 2. Spiral path Table Ⅰ Matrix P for An 18 × 19 Image

7 3. Proposed method Extract individual spots Calculated initial center coordinates Divide the sequences Encode Input image Compressed files No Last spot? Tune the spiral path Yes 16 × 16

8 3.1 Spot extraction where Im[i, j] is the image pixel value.

9 3.1 Spot extraction White lines show how spot sub-images are extracted. spot sub-image (16 x 16)

Spot extraction spot sub-image (16 x 16) m Sub = 16, n Sub =

Spiral path fitting where m Sub and n Sub are the size of extracted spot sub- image.

Spiral path fitting Center X = (302×1+379×2+ … + 284×15+264×16)/ ( … ) =89916/10509= 9 Center y = 97214/10509= 9 (9, 9)

Spiral path fitting Spiral path

Pixel prediction where y i s being their pixel values, r i s being their distances from center and n Neighbor is the number of (y i, r i ) pairs. and use ŷ to predict the intensity of our pixel based on r 0, its distance to center. In (3) we have The linear interpolation function:

Pixel prediction Linear interpolation function for 5 neighbors used to predict intensity of the pixel with distance r 0 from the center

Sequence coding  First, we have a residual sequence with the length m Sub ×n Sub -1 for a m Sub ×n Sub spot sub-image.  Spot parts and background parts of all spot sub-images of the microarray image are concatenated to form two files.  Last, the adaptive Huffman coding is chosen for this application.

Sequence coding Spiral path sequence (a) and prediction residual sequence (b) (a) (b) Spot parts Background parts

Sequence coding Spot part (c) and background part (d) of residual sequence (c) (d)

Experimental results Table Ⅱ Cumulative Compressed Size of Original File (in Bytes) OriginalHeader Spot reg.Background reg. Comp- ressed OriginalCodedOriginalCoded 187,7021,44059,46242,798126,92244,05688,294 Header: spiral path centers, and first pixel intensity values

Experimental results Table Ⅲ Compression Ratio of Our Method Compared to Some Others MethodComp. ratioMethodComp. ratio GIF1.54:1Lossless-41.60:1 ZIP1.67:1Lossless-51.70:1 JPEG :1Lossless-61.69:1 Lossless-11.73:1Lossless-71.79:1 Lossless-21.71:1JPEG-LS2.02:1 Lossless-31.64:1Our2.13:1

21 5. Conclusions This paper proposed a lossless compression algorithm for microarray images. Spiral path and linear neighbor prediction are some of the new concepts proposed in this work.

22 6. Comments 從實驗結果可以明顯的發現, Spot 區域的壓 縮率相較於背景區域而言非常的低,因此可 以針對 Spot 區域找到一個更適合的壓縮方法, 以提昇整體的壓縮率。