Determination of the gluon polarisation at HERMES N. Bianchi on behalf of: The HERMES Collaboration & The main analyzers (P.Liebing, E.Aschenauer, R.Fabbri,

Slides:



Advertisements
Similar presentations
The COMPASS spin physics program Rencontres de Moriond S. Panebianco The COMPASS spin physics program Stefano Panebianco (CEA/Saclay) on behalf of the.
Advertisements

1 New target transverse spin dependent azimuthal asymmetries from COMPASS experiment Bakur Parsamyan INFN & University of Turin on behalf of the COMPASS.
Recent measurement of ΔG/G at COMPASS Sébastien Procureur – CEA Saclay on behalf of the COMPASS collaboration EPS200523/07/2005.
How to measure the charm content of the proton? Two challenging proposals for heavy quark physics at EIC 2. Test of the pQCD applicability to charm photoproduction:
Gyöngyi Baksay Florida Institute of Technology
Low x meeting, Sinai Alice Valkárová on behalf of H1 collaboration LOW x meeting 2005, Sinaia H1 measurements of the structure of diffraction.
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
Determination of the gluon polarisation at COMPASS & RHIC Sébastien Procureur (CEA - Saclay) Determination of  G at COMPASS & RHICPAVI06, Milos S.Procureur.
Measurement of polarized distribution functions at HERMES Alessandra Fantoni (on behalf of the HERMES Collaboration) The spin puzzle & the HERMES experiment.
Review of  G in DIS and pp … a lot has happened since Kyoto Frank Ellinghaus University of Mainz / University of Colorado October 2008 SPIN’08, Charlottesville,
Constraining the polarized gluon PDF in polarized pp collisions at RHIC Frank Ellinghaus University of Colorado (for the PHENIX and STAR Collaborations)
10/03/'06 SPIN2006, T. Horaguchi 1 Measurement of the direct photon production in polarized proton-proton collisions at  s= 200GeV with PHENIX CNS, University.
J. Seele - WWND 1 The STAR Longitudinal Spin Program Joe Seele (MIT) for the Collaboration WWND 2009.
QCD Studies at HERA Ian C. Brock Bonn University representing the ZEUS and H1 Collaborations.
Inclusive Jets in ep Interactions at HERA, Mónica V á zquez Acosta (UAM) HEP 2003 Europhysics Conference in Aachen, July 19, Mónica Luisa Vázquez.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
1 Recent results on Polarized Quark and Gluon Distributions at COMPASS I.Savin, JINR, Dubna on behalf of the COMPASS Collaboration Outline 1. Introduction.
Possibilities to perform DVCS measurement at COMPASS E. Burtin CEA-Saclay Irfu/SPhN On Behalf of the COMPASS Collaboration DIS Madrid - 29 April,
New results on SIDIS SSA from JLab  Physics Motivation  Double spin asymmetries  Single Spin Asymmetries  Future measurements  Summary H. Avakian.
PANIC05 M. Liu1 Probing the Gluon Polarization with A LL of J/  at RHIC Ming X. Liu Los Alamos National Lab (PHENIX Collaboration)
16/04/2004 DIS2004 WGD1 Jet cross sections in D * photoproduction at ZEUS Takanori Kohno (University of Oxford) on behalf of the ZEUS Collaboration XII.
Spin structure of the nucleon
Single-spin asymmetries in two hadron production of polarized deep inelastic scattering at HERMES Tomohiro Kobayashi Tokyo Institute of Technology for.
Spin physics at the SMC Spin Muon Collaboration A. Magnon (CEA-Saclay/IRFU & COMPASS)
F.-H. Heinsius (Universität Freiburg/CERN) Introduction Gluon polarization in the nucleon Transverse spin distribution Newest Results from the Experiment.
1 E.C. Aschenauer Recent results from lepton proton scattering on the spin structure of the nucleon.
Single-Spin Asymmetries at CLAS  Transverse momentum of quarks and spin-azimuthal asymmetries  Target single-spin asymmetries  Beam single-spin asymmetries.
J/  production in p+p collisions at PHENIX and gluon distribution QWG meeting at FNAL September Hiroki Sato (Kyoto University) for the PHENIX collaboration.
Oct 6, 2008Amaresh Datta (UMass) 1 Double-Longitudinal Spin Asymmetry in Non-identified Charged Hadron Production at pp Collision at √s = 62.4 GeV at Amaresh.
Spin transfer coefficient K LL’ in  photoproduction at HERMES D. Veretennikov On behalf of the HERMES collaboration DIS08, London.
F.-H. Heinsius (Universität Freiburg) on behalf of the COMPASS collaboration Gluon polarization measurements at DIS 2004, Štrbské Pleso,
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Diffractive ρ° production at COMPASS Nicole d’Hose, CEA-Saclay On behalf of the COMPASS collaboration Results on spin dependence for exclusive ρ° production.
The nucleon helicity as seen by HERMES From g 1 to  G Patricia Liebing RIKEN-BNL Research Center for the collaboration Annual RHIC and AGS Users Meeting,
DIS Conference, Madison WI, 28 th April 2005Jeff Standage, York University Theoretical Motivations DIS Cross Sections and pQCD The Breit Frame Physics.
Measurement of Flavor Separated Quark Polarizations at HERMES Polina Kravchenko (DESY) for the collaboration  Motivation of this work  HERMES experiment.
K 0 S and  production at ZEUS, A. Savin, University of Wisconsin DIS 2006, April 22, K 0 S and  production at ZEUS Alexander A. Savin University.
Measurement of the Double Longitudinal Spin Asymmetry in Inclusive Jet Production in Polarized p+p Collisions at 200 GeV Outline Introduction RHIC.
Isabell-A. Melzer-Pellmann DIS 2007 Charm production in diffractive DIS and PHP at ZEUS Charm production in diffractive DIS and PHP at ZEUS Isabell-Alissandra.
Single-spin asymmetry in interference fragmentation on a transversely polarized hydrogen target at HERMES Tomohiro Kobayashi Tokyo Institute of Technology.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
A. Bertolin on behalf of the H1 and ZEUS collaborations Charm (and beauty) production in DIS at HERA (Sezione di Padova) Outline: HERA, H1 and ZEUS heavy.
Spin dependence in exclusive ρ o production at COMPASS Andrzej Sandacz Sołtan Institute for Nuclear Studies, Warsaw On behalf of the Collaboration  ρ.
October 22, 2004 Single Spin Asymmetries at RHIC 1 F.Videbaek Physics Department, Brookhaven National.
F.-H. Heinsius (Universität Freiburg) on behalf of the COMPASS collaboration Gluon polarization measurements at DIS 2004, Štrbské Pleso,
1 Workshop on ‘Contribution of the Gluon Spin to the Proton Spin’ – RIKEN 05 P.Liebing / E.C. Aschenauer The challenge to extract  G/G from HERMES data.
Transversity 2005, Como Two-hadron Adam Mielech INFN Trieste on behalf of COMPASS collaboration 7-10th. September 2005.
Feasibility studies for DVCS and first results on exclusive  at COMPASS DVCS studies Physics impact Experimental issues Recoil detector prototype Exclusive.
1 CLAS-eg1 pol.-proton analysis H.Avakian (JLab) semi-SANE Collaboration Meeting April 21, 2005.
Review of results on polarized glue from fixed-target DIS experiments G. K. Mallot CERN/PH APS Meeting, St. Louis, MO, April, 2008.
Flavor decomposition at LO
Measurements of ΔG Focus on COMPASS data ΔG from scaling violations
Determination of g/g from Hermes High-pT hadrons
Explore the new QCD frontier: strong color fields in nuclei
Plans for nucleon structure studies at PANDA
Study of spin structure of nucleon in COMPASS - measurement of G/G
Observation of Diffractively Produced W- and Z-Bosons
Determination of g/g from Hermes High-pT hadrons
Selected Physics Topics at the Electron-Ion-Collider
Study of Strange Quark in the Nucleon with Neutrino Scattering
Measurement of the Gluon Polarization at COMPASS
Single Spin Asymmetry with a Transversely Polarized
Overview on hard exclusive production at HERMES
The gluon polarisation ΔG/G at COMPASS
Measurements of ΔG Focus on COMPASS data ΔG from scaling violations
Observation of Diffractively Produced W- and Z-Bosons
GEp-2γ experiment (E04-019) UPDATE
Determination of the gluon polarisation
ΔG/G Extraction From High-Pt Hadron Pairs at COMPASS
The Helicity Structure of the Nucleon from Lepton Nucleon Scattering
Presentation transcript:

Determination of the gluon polarisation at HERMES N. Bianchi on behalf of: The HERMES Collaboration & The main analyzers (P.Liebing, E.Aschenauer, R.Fabbri, V.Mexner, …) N.Bianchi, Pacific SPIN07, Vancouver BC

How to measure G: indirect N.Bianchi, Pacific SPIN07, Vancouver BC For fixed target exp. small x-Q 2 lever arm: g (and q) very badly determined : G 0,5 1

How to measure G: direct (general) N.Bianchi, Pacific SPIN07, Vancouver BC Method: Photon-Gluon-Fusion t h/2m q Charm-production : PGF dominated and hard scale by the mass of c-Quarks Open charm: clean process (no charm quarks in the nucleon wave function)

How to measure G: direct (high p t ) N.Bianchi, Pacific SPIN07, Vancouver BC (Pairs of) hadrons with high transverse momenta (Hard scale: p t = 1 – few GeV range) Open charm needs very high energy to access to charm production (CERN, RHIC experiments) At HERMES hidden charm (J/ ) is produced and identified : low statistics less clean channel due to VMD contribution and FSI Best direct way for HERMES to measure G:

First HERMES measurement N.Bianchi, Pacific SPIN07, Vancouver BC First longitudinal double spin asymmetries for 2 hadrons Historical plot : first HERMES data and future projections A. Airapetian et al, Phys. Rev. Lett. 84 (2000) 2584

Old HERMES data N.Bianchi, Pacific SPIN07, Vancouver BC Following SLAC pioneristic measurement on un-tagged single hadron asymmetry.. HERMES preliminary 2001 …. the differences between the curves (BBS) are less than the differences between any of the curves and the data. This makes it impossible to draw any conclusions about G(x). ….The present data will provide valuable experimental constraints on such models, and perhaps lead to constraints on the gluon polarization in the nucleon in the future. (E155 - Phys.Lett.B458 (1999) 536) Proton Deuteron

New HERMES data N.Bianchi, Pacific SPIN07, Vancouver BC improved statistics both H and (high statistics) D longitudinally polarized target new anti-tagged analysis improved a lot the MC knowledge and tuning systematic studies different channels (anti-tagged, tagged, pairs)

Asymmetries (anti-tagged) N.Bianchi, Pacific SPIN07, Vancouver BC Anti-tagged data: Scattered lepton not in acceptance p t measured with respect to beam axis for p t >1.05 GeV : 1272k(419k) for deuteron (proton) sample Curves from MC +asymmetry model using: Δg/g(x)=0 : central Δg/g(x)=-1 : upper Δg/g(x)=+1 : lower Δg/g(x)=0 asymmetry is due to quarks (DIS at large Q 2 and x at large fake p T ) Gluons become important for above p t 1 GeV

Asymmetries (tagged) N.Bianchi, Pacific SPIN07, Vancouver BC Tagged data: Scattered lepton detected in acceptance p t measured with respect to virtual photon Q 2 >0.1 GeV 2, W 2 >4 GeV 2 for p t >1 GeV : 53k (19k) for deuteron (proton) sample Curves from MC +asymmetry model using: Δg/g(x)=0 : central Δg/g(x)=-1 : upper Δg/g(x)=+1 : lower Δg/g(x)=0 : large and stable asymmetry is due to quarks in DIS events averaged in the HERMES acceptance

Asymmetries (hadron pairs) N.Bianchi, Pacific SPIN07, Vancouver BC Anti-tagged data for pairs of charged-hadrons: No regards on scattered lepton (10% are detected) p t measured with respect to beam axis p t (h1,h2) > 0.5 GeV for >2 GeV 2 :60k (20k) for deuteron (proton) sample plotted vs. lower cut on: Curves from MC+asymmetry model using: Δg/g(x)=0 : central Δg/g(x)=-1 : upper Δg/g(x)=+1 : lower

Extraction (general) N.Bianchi, Pacific SPIN07, Vancouver BC Measured asymmetry is an incoherent superposition of different hard and soft subprocess asymmetries: Signal: Gluon of the nucleon in the initial state Background: all other sub-processes MC Lepto : LO and NLO DIS but no photoproduction Pythia : DIS but also non perturbative model for photoproduction

MC Models N.Bianchi, Pacific SPIN07, Vancouver BC MC model PYTHIA 6.2,tuned and adapted for HERMES data fragmentation process, intrisic k t, exclusive ρ 0 cross section (VMD) Provides kinematics of the hard subprocess relative contributions f i of the background and signal subprocesses in the relevant pt range background asymmetries and the hard subprocess asymmetries -weight calculated for every MC event -PDFs (unpol/pol): Hard process CTEQ5L/GRSV2000 (nucleon) Hard resolved photon processes SaS2/GRS (photon) -Asymmetry assumptions for soft processes: A=0 for exclusive/diffractive processes A~A1(low x) from world data for soft nondiffractive (low- pT) Vary PDFs/assumptions for syst. error

Subprocesses N.Bianchi, Pacific SPIN07, Vancouver BC

Subprocesses N.Bianchi, Pacific SPIN07, Vancouver BC VMD (elast.+diffr., soft low-pT): decreasing with p TDIS: increasing (dominating) with p T QCD2->2(q): QCDC/QCD2->2(q): increasing with p T Signal processes are PGF and QCD2>2(g) (resolved photon) Antitagged, Charge combined, Deuteron data

Asymmetries of Subprocesses N.Bianchi, Pacific SPIN07, Vancouver BC Antitagged, Charge combined, Deuteron data DIS increasing with p T (x): positive QCD2->2 QCDC/QCD2->2,VMD: flat and small but important for background asymmetry! |PGF| increasing with p T |PGF| increasing with p T :negative QCD2->2(g): opposite to PGF, small

g/g extraction: methods I and II N.Bianchi, Pacific SPIN07, Vancouver BC Method I: –Factorize –Assumes No sign change in â(x) flat g/g(x) –No information on of measurement –Gives average g/g over covered x range (0.07<x<0.7) Method II: –Fit: find a g/g(x) such that –Assumes functional form for g/g(x) –Only small range in p T –Gives g/g(x) and average x of measurement

G from method I N.Bianchi, Pacific SPIN07, Vancouver BC h +,h - antitagged: 4 points between 1.05<p T <2.5 GeV h +,h - tagged: 1 point for p T >1 GeV Pairs: 1 point for GeV 2 Assuming g(x)/g(x) const over x : Only statistical errors are shown Results for different data samples (diff. mixtures) agree within statistics Consistency between the two hadron charges and the two targets Dominating sample: Deuteron antitagged -> Used for Method II and syst. error analysis (charge combined)

G from method II N.Bianchi, Pacific SPIN07, Vancouver BC Light shaded area: range of all data Dark shaded area: fit center of gravity (span of the 4 p t bins) Several test functions Final 2 functions used are polynomials with 1(2) free parameters Fix: - g/g x for x 0 - g/g 1 for x 1 | g/g(x)|<1 for all x Difference between functions is a systematic uncertainty (Anti-tagged only)

G from method II N.Bianchi, Pacific SPIN07, Vancouver BC 2/ndf 5 mainly due to highest p T point Model systematic is not included in fit 1-2 parameter function is too smooth function 1 used as default and function 2 for systematics

Model systematic N.Bianchi, Pacific SPIN07, Vancouver BC PYTHIA 6.2 has been tuned: fair agreement in tagged region (see plot vs kinematic variables) less agreement in anti-tagged region some failures in p t dependence checks with LO pQCD (collinear) Uncertainties from each group –PYTHIA params. –PDFs –low-p T asym. summed linearly to Models uncertainty Experimental (stat.+syst.) added in quadrature –syst. uncertainty (beam&target) from 4% scaling uncertainty to 14% on g/g

Results vs world data N.Bianchi, Pacific SPIN07, Vancouver BC Black and blue curves: pQCD fits to g1 Black data points: CERN exp results Red data point: Prel. HERMES Method I Red curves Prel. HERMES Method II: fit Δg(x)/g(x) with 2 functions such that

Conclusions N.Bianchi, Pacific SPIN07, Vancouver BC g/g(x, 2) = ± 0.034(stat) ± (sys-exp) (sys-model) g/g(x, 2) = ± 0.034(stat) ± (sys-exp) (sys-model) g/g has been extracted by HERMES using two different methods Method I Method II Syst. model uncertainties still dominating (PDFs, PYTHIA model) G/G is likely small G/G is unlikely to solve the puzzle of the nucleon missing spin

Back up slides N.Bianchi, Pacific SPIN07, Vancouver BC