Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, Shear banding in granular materials Stefan Luding PART/DCT, TUDelft, NL Thanks to: M. Lätzel, M.-K. Müller (Stuttgart), R. P. Behringer, J. Geng, D. Howell (Duke), M. van Hecke, D. Fenistein (Leiden)
Introduction Results DEM Micro-Macro (global) Micro-Macro (local) Outlook - Anisotropy - Rotations Single particle Contacts Many particle simulation Continuum Theory Contents
Single particle Contacts Many particle simulation Continuum Theory Contents E x p e r i m e n t s Introduction Results DEM Micro-Macro (global) Micro-Macro (local) Outlook - Anisotropy - Rotations
Material behavior of granular media Non-Newtonian Flow behavior under slow shear inhomogeneityrotations Yield-surface Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding,
Material behavior of granular media 3D 3-dimensional modeling of shear and sound propagation Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, P-wave shape and speed Universal shear zones
Sound propagation in granular media 3-dimensional modeling of sound propagation Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, P-wave shape and speed
Applications Granular media (powder, sand, …) Colloidal systems (+fluid) Atomistic systems in confined geometries Many particle systems (traffic, pedestrians) Industrial scale applications ?
Why ? `Many particle simulations work for small systems only ( ) Industrial scale applications rely on FEM FEM relies on continuum mechanics + constitutive relations `Micro-macro can provide those ! Homogenization/Averaging
Introduction Results DEM Contacts Many particle simulation Contents
Equations of motion Overlap Forces and torques: Normal Contacts Many particle simulation Discrete particle model
Contact force measurement (PIA)
Hysteresis (plastic deformation)
- (too) simple - piecewise linear - easy to implement Contact model
- (really too) simple - linear - very easy to implement Linear Contact model
- simple - non-linear - easy to implement Hertz Contact model
Sound Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding,
Sound 3-dimensional modeling of sound propagation Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, P-wave shape and speed
potential energyrotationsdisplacements Micro simulation of shear bands
Strain Control (top): Initial position and final position z 0 and z f Stress-control (right): With wall mass: m x, friction x and (i)Bulk material force F x (t) (ii)External force –p x z(t), and (iii)Frictional force x x(t) Model system bi-axial box
zz =9.1% zz =4.2% zz =1.1% zz =0.0% Simulation results
Bi-axial box
Introduction Results DEM Micro-macro (global) Contacts Many particle simulation Continuum Theory Contents
Bi-axial compression with p x =const.
geometrical friction angle kc/k20½124kc/k20½124 p x 100 zz p x 500 zz c f min macro cohesion Cohesion – no friction
Sliding contact points: - Static Coulomb friction - Dynamic Coulomb friction Tangential contact model
- Static friction - Dynamic friction project into tangential plane compute test force sticking: sliding: Tangential contact model - spring - dashpot before contact static dynamic static
k c = 0 and µ = 0.5 Internal friction angle Total friction angle Friction – no cohesion
Bi-axial box rotations
Direction, amplitude, anti-symmetric (!) stress Rotations (local)
Rolling (mimic roughness or steady contact necks) - Static rolling resistance - Dynamic resistance Tangential contact model
Silo Flow with friction +rolling friction
Silo Flow with friction
Tangential contact model Torsion (large contact area) - Static torsion resistance - Dynamic resistance
DEM simulation macroscopic material behaviour Micro: Disks (in 2-D) Particle size a = [0.5 : 1.5] mm Stiffness k 2 = 10 5 Nm -1 and k 1 =k 2 /2 Cohesion k c = 0, ½, 1, 2, 4 k 2 Friction µ = 0 Macro: Youngs Modulus E k 1 Poisson ratio 0.66 Friction angle 13° (µ=0) and 31° (µ=0.5) Dilatancy angle 5° (p=500) and 11° (p=100) Cohesion: + Bi-axial box setup Summary: micro-macro (global)
An-isotropy
Stiffness tensor vertical horizontal shear anisotropy
An-isotropy Structure changes with deformation Different stiffness: More stiff against shear Less stiff perpendicular Evolution with time:
Stiffness tensor vertical horizontal shear shear1 shear2 shear3
From virtual work … For each single contact … Þ Stress tensor Þ Stiffness matrix C (elastic) - Normal contacts - Tangential springs Deformations (2D): - Isotropic compression V - Deviatoric strain (=shear) D, Þ Stress changes - Isotropic V - Deviatoric D, Local micro-macro transition
Constitutive model with rotations
+ successful tool – few parameters - microscopic foundations ? - extensions & parameter identification Continuum Theory deformation - rotations cyclic deformations - creep Hypoplastic FEM model
density vs. pressure & friction vs. density Micro-macro transition
Granular media are: - compressible - inhomogeneous (force-chains) - (almost always) an-isotropic and - micro-polar (rotations) Summary – part 1: global view
Introduction Results Micro-macro (global) Micro-macro (local) Single particle Contacts Many particle simulation Continuum Theory Contents
Global average vs. Local average Global + Experimentally accessible data - Wall effects - Averaging over inhomogeneities Local - Difficult to compare to experiment + Averages away from the walls + Average over `similar volume elements
potential energyrotationsdisplacements Micro informations: shear bands
Direction, amplitude, anti-symmetric (!) stress Rotations (local)
Ring geometry (Behringer et al.)
Ring geometry
2D shear cell – energy
2D shear cell – force chains
2D shear cell – shear band
Ring geometry
Averaging Formalism Any quantity: In averaging volume:
Averaging Formalism Any quantity: - Scalar - Vector - Tensor
Averaging Density Any quantity: - Scalar: Density/volume fraction
Density profile Global volume fraction
Any quantity: - Scalar - Vector – velocity density Averaging Velocity
Velocity field exponential
Velocity gradient exponential:
Velocity gradient exponential:
Velocity distribution
Averaging Fabric Any quantity: - Scalar: contacts - Vector: normal - Contact distribution
Fabric tensor contact probability … centerwall
Fabric tensor (trace) contact number density
Macro (contact density)
Fabric tensor (deviator) an-isotropy (!)
Averaging Stress Any quantity: - Scalar - Vector - Tensor: Stress
Stress tensor (static) shear stress
Stress tensor (dynamic) exponential
Stress equilibrium (1) acceleration:
Stress equilibrium (2) ? ?
Averaging Deformations Deformation: - Scalar - Vector - Tensor: Deformation
Macro (bulk modulus)
Macro (shear modulus)
Constitutive model – no rotations
Averaging Rotations Deformation: - Scalar - Vector: Spin density - Tensor
Rotations – spin density eigen-rotation:
Spin distribution
Velocity-spin distribution high dens.low dens. sim. exp.
Macro (torque stiffness)
Deformations (2D): - Isotropic V - Deviatoric (=shear) D, - Mean rotation (=slip) * - Difference rot. (=rolling) ** Þ Stress changes ??? - Isotropic V - Deviatoric D, - Asymmetric A An-isotropy and rotations
Constitutive model with rotations
Granular media are: - compressible - inhomogeneous (force-chains) - (almost always) an-isotropic - micro-polar (rotations) Summary Granular media are … … interesting
Open issues Accounting for inhomogeneities (temperature) Structure evolution with deformation (time) Micropolar continuum theory …
The End
Contact force measurement (PIA)
Hysteresis (plastic deformation)
- (too) simple - piecewise linear - easy to implement Contact model
- (really too) simple - linear - very easy to implement Linear Contact model
- simple - non-linear - easy to implement Hertz Contact model
Sound Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding,
Sound 3-dimensional modeling of sound propagation Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, P-wave shape and speed
Sliding contact points: - Static Coulomb friction - Dynamic Coulomb friction Tangential contact model
- Static friction - Dynamic friction project into tangential plane compute test force sticking: sliding: Tangential contact model - spring - dashpot before contact static dynamic static
Bi-axial box rotations
Direction, amplitude, anti-symmetric (!) stress Rotations (local)
Rolling (mimic roughness or steady contact necks) - Static rolling resistance - Dynamic resistance Tangential contact model
Silo Flow with friction +rolling friction
Silo Flow with friction
Tangential contact model Torsion (large contact area) - Static torsion resistance - Dynamic resistance
+ successful tool – few parameters - microscopic foundations ? - extensions & parameter identification Continuum Theory deformation - rotations cyclic deformations - creep Hypoplastic FEM model
density vs. pressure & friction vs. density Micro-macro transition
From virtual work … For each single contact … Þ Stress tensor Þ Stiffness matrix C (elastic) - Normal contacts - Tangential springs Deformations (2D): - Isotropic compression V - Deviatoric strain (=shear) D, Þ Stress changes - Isotropic V - Deviatoric D, Local micro-macro transition
page with logo