Dynamic Spatial Mixture Modelling and its Application in Cell Tracking - Work in Progress - Chunlin Ji & Mike West Department of Statistical Sciences,

Slides:



Advertisements
Similar presentations
Filtering for High Dimension Spatial Systems Jonathan Briggs Department of Statistics University of Auckland.
Advertisements

Random Set/Point Process in Multi-Target Tracking
SAMSI Discussion Session Random Sets/ Point Processes in Multi-Object Tracking: Vo Dr Daniel Clark EECE Department Heriot-Watt University UK.
Discussion for SAMSI Tracking session, 8 th September 2008 Simon Godsill Signal Processing and Communications Lab. University of Cambridge www-sigproc.eng.cam.ac.uk/~sjg.
Dynamic spatial mixture modelling and its application in Bayesian tracking for cell fluorescent microscopic imaging Chunlin Ji & Mike West Department of.
Jose-Luis Blanco, Javier González, Juan-Antonio Fernández-Madrigal University of Málaga (Spain) Dpt. of System Engineering and Automation May Pasadena,
CSCE643: Computer Vision Bayesian Tracking & Particle Filtering Jinxiang Chai Some slides from Stephen Roth.
Online Filtering, Smoothing & Probabilistic Modeling of Streaming Data In short, Applying probabilistic models to Streams Bhargav Kanagal & Amol Deshpande.
Adaption Adjusting Model’s parameters for a new speaker. Adjusting all parameters need a huge amount of data (impractical). The solution is to cluster.
Visual Tracking CMPUT 615 Nilanjan Ray. What is Visual Tracking Following objects through image sequences or videos Sometimes we need to track a single.
On-Line Probabilistic Classification with Particle Filters Pedro Højen-Sørensen, Nando de Freitas, and Torgen Fog, Proceedings of the IEEE International.
Introduction to Sampling based inference and MCMC Ata Kaban School of Computer Science The University of Birmingham.
Oklahoma State University Generative Graphical Models for Maneuvering Object Tracking and Dynamics Analysis Xin Fan and Guoliang Fan Visual Computing and.
PHD Approach for Multi-target Tracking
Probabilistic Robotics Bayes Filter Implementations Particle filters.
Artificial Learning Approaches for Multi-target Tracking Jesse McCrosky Nikki Hu.
Paper Discussion: “Simultaneous Localization and Environmental Mapping with a Sensor Network”, Marinakis et. al. ICRA 2011.
World Statistics Day Statisical Modelling of Complex Systems Jouko Lampinen Finnish Centre of Excellence in Computational Complex Systems Research.
TOWARD DYNAMIC GRASP ACQUISITION: THE G-SLAM PROBLEM Li (Emma) Zhang and Jeff Trinkle Department of Computer Science, Rensselaer Polytechnic Institute.
Particle Filters.
Segmentation and Tracking of Multiple Humans in Crowded Environments Tao Zhao, Ram Nevatia, Bo Wu IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,
Adaptive Rao-Blackwellized Particle Filter and It’s Evaluation for Tracking in Surveillance Xinyu Xu and Baoxin Li, Senior Member, IEEE.
Sérgio Pequito Phd Student
Nonlinear and Non-Gaussian Estimation with A Focus on Particle Filters Prasanth Jeevan Mary Knox May 12, 2006.
Particle Filters for Mobile Robot Localization 11/24/2006 Aliakbar Gorji Roborics Instructor: Dr. Shiri Amirkabir University of Technology.
1 Integration of Background Modeling and Object Tracking Yu-Ting Chen, Chu-Song Chen, Yi-Ping Hung IEEE ICME, 2006.
Today Introduction to MCMC Particle filters and MCMC
Probabilistic Robotics Bayes Filter Implementations Particle filters.
Sampling Methods for Estimation: An Introduction
Novel approach to nonlinear/non- Gaussian Bayesian state estimation N.J Gordon, D.J. Salmond and A.F.M. Smith Presenter: Tri Tran
Real-Time Decentralized Articulated Motion Analysis and Object Tracking From Videos Wei Qu, Member, IEEE, and Dan Schonfeld, Senior Member, IEEE.
Human Computer Interface based on Hand Tracking P. Achanccaray, C. Muñoz, L. Rojas and R. Rodríguez 4 th International Symposium on Mutlibody Systems and.
Student: Fan Bai Instructor: Dr. Sushil K. Prasad Csc8530 Spring 2012.
Bayesian Filtering for Robot Localization
Adaption Def: To adjust model parameters for new speakers. Adjusting all parameters requires too much data and is computationally complex. Solution: Create.
Ryan Irwin Intelligent Electronics Systems Human and Systems Engineering Center for Advanced Vehicular Systems URL:
Particle Filtering in Network Tomography
BraMBLe: The Bayesian Multiple-BLob Tracker By Michael Isard and John MacCormick Presented by Kristin Branson CSE 252C, Fall 2003.
Object Tracking using Particle Filter
1. Introduction Motion Segmentation The Affine Motion Model Contour Extraction & Shape Estimation Recursive Shape Estimation & Motion Estimation Occlusion.
Particle Filtering (Sequential Monte Carlo)
Probabilistic Robotics Bayes Filter Implementations.
Particle Filters for Shape Correspondence Presenter: Jingting Zeng.
Mixture Models, Monte Carlo, Bayesian Updating and Dynamic Models Mike West Computing Science and Statistics, Vol. 24, pp , 1993.
Forward-Scan Sonar Tomographic Reconstruction PHD Filter Multiple Target Tracking Bayesian Multiple Target Tracking in Forward Scan Sonar.
Online Kinect Handwritten Digit Recognition Based on Dynamic Time Warping and Support Vector Machine Journal of Information & Computational Science, 2015.
Sanjay Patil 1 and Ryan Irwin 2 Graduate research assistant 1, REU undergrad 2 Human and Systems Engineering URL:
Sanjay Patil 1 and Ryan Irwin 2 Intelligent Electronics Systems, Human and Systems Engineering Center for Advanced Vehicular Systems URL:
The Dirichlet Labeling Process for Functional Data Analysis XuanLong Nguyen & Alan E. Gelfand Duke University Machine Learning Group Presented by Lu Ren.
Sanjay Patil 1 and Ryan Irwin 2 Intelligent Electronics Systems, Human and Systems Engineering Center for Advanced Vehicular Systems URL:
-Arnaud Doucet, Nando de Freitas et al, UAI
Maximum a posteriori sequence estimation using Monte Carlo particle filters S. J. Godsill, A. Doucet, and M. West Annals of the Institute of Statistical.
Stick-Breaking Constructions
Boosted Particle Filter: Multitarget Detection and Tracking Fayin Li.
Sequential Monte-Carlo Method -Introduction, implementation and application Fan, Xin
Adaption Def: To adjust model parameters for new speakers. Adjusting all parameters requires an impractical amount of data. Solution: Create clusters and.
INI Cambridge, June 24 th 2008 Data, models & computation for stochastic dynamic cellular networks in systems biology Mike West Department of Statistical.
Generalized Spatial Dirichlet Process Models Jason A. Duan Michele Guindani Alan E. Gelfand March, 2006.
Bayesian Density Regression Author: David B. Dunson and Natesh Pillai Presenter: Ya Xue April 28, 2006.
Visual Tracking by Cluster Analysis Arthur Pece Department of Computer Science University of Copenhagen
The Unscented Particle Filter 2000/09/29 이 시은. Introduction Filtering –estimate the states(parameters or hidden variable) as a set of observations becomes.
Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks Arnaud Doucet, Nando de Freitas, Kevin Murphy and Stuart Russell CS497EA presentation.
The Nested Dirichlet Process Duke University Machine Learning Group Presented by Kai Ni Nov. 10, 2006 Paper by Abel Rodriguez, David B. Dunson, and Alan.
APPLICATIONS OF DIRICHLET PROCESS MIXTURES TO SPEAKER ADAPTATION Amir Harati and Joseph PiconeMarc Sobel Institute for Signal and Information Processing,
Particle Filtering for Symmetry Detection and Segmentation Pramod Vemulapalli.
Sanjay Patil and Ryan Irwin Intelligent Electronics Systems Human and Systems Engineering Center for Advanced Vehicular Systems URL:
Sanjay Patil and Ryan Irwin Intelligent Electronics Systems, Human and Systems Engineering Center for Advanced Vehicular Systems URL:
Introduction to Sampling based inference and MCMC
Bayesian Generalized Product Partition Model
Probabilistic Robotics
Presentation transcript:

Dynamic Spatial Mixture Modelling and its Application in Cell Tracking - Work in Progress - Chunlin Ji & Mike West Department of Statistical Sciences, Duke University SMC Mid-Program Workshop February 19, 2009

Outline Spatial Inhomogeneous Point Process Spatial Inhomogeneous Point Process Dynamic Spatial Mixture Modelling Dynamic Spatial Mixture Modelling Particle Filter Implementation Particle Filter Implementation Cell Fluorescence Imaging Tracking Cell Fluorescence Imaging Tracking Conclusion and Future Works Conclusion and Future Works

Introduction Dynamic spatial inhomogeneous point process Dynamic spatial inhomogeneous point process Potential application areas Potential application areas Multi-target tracking, particularly for extended target Multi-target tracking, particularly for extended target Cell fluorescence imaging tracking Cell fluorescence imaging tracking Existing methods Existing methods Probability hypothesis density (PHD) filter (Vo and Ma, 2006; Clark et al., 2007) Probability hypothesis density (PHD) filter (Vo and Ma, 2006; Clark et al., 2007) Poisson models for extended target tracking (Gilholm et al., 2005) Poisson models for extended target tracking (Gilholm et al., 2005)

Cell fluorescence data

Spatial Poisson point process Point process over S Intensity function ( ) Point process over S Intensity function ( ) Density: f ( )= ( )/ = z S (z)dz Density: f ( )= ( )/ = z S (z)dz Realized locations Z N ={z 1,...,z N } Realized locations Z N ={z 1,...,z N } Likelihood Likelihood

Spatial Dirichlet process mixture (DPM) model (Ji et al. 2009) Flexible model for spatially varying f ( ) Flexible model for spatially varying f ( ) f ( ) Bivariate Gaussian mixture f ( ) Hierarchical DP prior over parameters Hierarchical DP prior over parameters

Dynamic Spatial DPM (DSDPM) DPM at each time point DPM at each time point Time evolution of mixture model parameters induces dynamic model for time-varying intensity function Time evolution of mixture model parameters induces dynamic model for time-varying intensity function Dynamic spatial point process Intensity function Z t-1 ZtZt Z t+1 Parameters of DPMs t-1 ( ) t ( ) t+1 ( ) t-1 t t+1

How points move in DSDPM Generalized Polya Urn scheme Generalized Polya Urn scheme (Caron et al., 2007) (4) t (2) t|t-1 (3) t|t-1 (1) t-1

Dynamic model for cells Component locations: i,t ={ i,t, s i,t }, Component locations: i,t ={ i,t, s i,t }, i,t ~ position of cells i,t ~ position of cells s i,t ~ parameters describing shape/appearance of cells s i,t ~ parameters describing shape/appearance of cells i,t and s i,t Near constant velocity model for i,t and s i,t Split process to simulate cell division: Split process to simulate cell division: - e.g. if s i,t says cell is large, then cell splits - e.g. if s i,t says cell is large, then cell splits

Particle filter implementation At time t 2 For each particle i=1,...,N For each particle i=1,...,N Evolve m t (i) according to the Generalized Polya Urn Evolve m t (i) according to the Generalized Polya Urn i,t and s i,t Update i,t and s i,t via near constant velocity model Split process Split process Sample c t (i) q(c t |m t (i), t|t-1 (i),Z t ) Sample c t (i) q(c t |m t (i), t|t-1 (i),Z t ) Sample t (i) q( t | t|t-1 (i),c t (i), Z t ) Sample t (i) q( t | t|t-1 (i),c t (i), Z t ) Compute importance weights Compute importance weights Resampling if needed Resampling if needed

Tracking result Cells represented by blue color are segmented from the original movie Cells represented by blue color are segmented from the original movie Green dots are the estimation of center positions of cells from the PF. Green dots are the estimation of center positions of cells from the PF.

Trajectory of cells

Further work Data association and track management Data association and track management Dynamic lineage analysis Dynamic lineage analysis Observation generation methods Observation generation methods Result of image segmentation Result of image segmentation Original image--fluorescence image Original image--fluorescence image Feature points, e.g. Harris Feature Points Feature points, e.g. Harris Feature Points Performance evaluation of MTT Performance evaluation of MTT

Reference Doucet, A., De Freitas, J. and Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. New York: Springer, (2001) Doucet, A., De Freitas, J. and Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. New York: Springer, (2001) F. Caron, M. Davy, and A. Doucet. Generalized poly urn for time-varying dirichlet process mixtures. Proceedings of the International Conference on Uncertainty in Artificial Intelligence(UAI),2007. F. Caron, M. Davy, and A. Doucet. Generalized poly urn for time-varying dirichlet process mixtures. Proceedings of the International Conference on Uncertainty in Artificial Intelligence(UAI),2007. K. Gilholm, S.J. Godsill, S. Maskell, and D. Salmond. Poisson models for extended target and group tracking. In Proc. SPIE: Signal and Data Processing of Small Targets, K. Gilholm, S.J. Godsill, S. Maskell, and D. Salmond. Poisson models for extended target and group tracking. In Proc. SPIE: Signal and Data Processing of Small Targets, B. Vo, and W. K. Ma. The Gaussian mixture Probability Hypothesis Density filter. IEEE Transactions on Signal Processing, B. Vo, and W. K. Ma. The Gaussian mixture Probability Hypothesis Density filter. IEEE Transactions on Signal Processing, Chunlin Ji, Daniel Merl, Thomas Kepler and Mike West. "Spatial Mixture Modelling for Partially Observed Point Processes: Application to Cell Intensity Mapping in Immunology." Bayesian Analysis, invited revision. Chunlin Ji, Daniel Merl, Thomas Kepler and Mike West. "Spatial Mixture Modelling for Partially Observed Point Processes: Application to Cell Intensity Mapping in Immunology." Bayesian Analysis, invited revision.

Thank You