Fourth European Space Weather Week 5-9 Nov. 2007 TEC F ORECASTING D URING D ISTURBED S PACE W EATHER C ONDITIONS : A P OSSIBLE A LTERNATIVE TO THE IRI-2001.

Slides:



Advertisements
Similar presentations
APPLICATIONS OF ANN IN MICROWAVE ENGINEERING.
Advertisements

B. Zolesi *, Lj.R. Cander **, A. Belehaki ***, I.Tsagouri ***, M.Pezzopane * and S.Pau * Istituto Nazionale di Geofisica e Vulcanologia, Italy; ** Rutherford.
In the frame of the SIDC Space Weather Pilot Project, the Royal Observatory of Belgium, the Royal Meteorological Institute of Belgium and the Geophysical.
Lect.3 Modeling in The Time Domain Basil Hamed
27-30 March 2006COST 724 MCM, Antalya, Turkey1 Integration of METU-IFS Server to COST 724 Server (BIRA) E. Tulunay 1,2, D. Heynderickx 3, E.T. Senalp 1,
Anna Belehaki National Observatory of Athens, Greece Fifth European Space Weather Week, Brussels, November 2008.
Emerging Space Weather Markets and some Case Studies: Neural Network Modeling in Forecasting the Near Earth Space Parameters Yurdanur Tulunay [1], Ersin.
Nonlinear rational model identification and control Professor Quan M. Zhu Bristol Institute of Technology University of the West of England Frenchay Campus.
1 SW CBA, ESWW, Brussels, Nov 2006 is there a business case for a European space weather service? Systems Engineering & Assessment Ltd (SEA) Chris Chaloner.
Space Weather influence on satellite based navigation and precise positioning R. Warnant, S. Lejeune, M. Bavier Royal Observatory of Belgium Avenue Circulaire,
A fuzzy neural network model to forecast the percent cloud coverage and cloud top temperature maps [1] Y. Tulunay, E.T. Şenalp, Ş. Öz, L.I. Dorman, E.
Third European Space Weather Week, Brussels, November 2006 Session 6 Science Underpinning Space Weather Third European Space Weather Week, Brussels,
IHY Year 2007 National Activities In Turkey Y.TULUNAY 1, E.TULUNAY 2, Z.KOCABAŞ 1, E.ALTUNTAŞ 1, T.YAPICI 1, E.T.ŞENALP 2 and A. ÖZGÜÇ 3, T. ATAÇ 3, R.
NEURAL NETWORKS Introduction
1 Prediction of Software Reliability Using Neural Network and Fuzzy Logic Professor David Rine Seminar Notes.
Monday 13 th November GSY/050388/ © BAE SYSTEMS All Rights Reserved ESA Space Weather Applications Pilot Project Service Development.
COST TIST Domain ACTION 296: Mitigation of Ionospheric Effects on Radio Systems (MIERS) Commencement date: 4 February 2005 Scheduled completion date: 3.
8th MCM and WG's Meetings, COST Action 724, March 2006, Antalya, Turkey COST 724 Turkish Initiative: Activities Relevant to WG1; WG2; WG3; WG4 Yurdanur.
Total Electron Content 32N 115W, Rachel Thessin, CSI 763, April 15, 2010.
E. Altuntas [1], Y. Tulunay [1], M. Messerotti [2], E. Tulunay [3], M. Molinaro [2], Zeynep Kocabas [1] 10/1/2015 COST 724 9th MCM, May, Sofia, Bulgaria.
15 May 2006ICTP, Space Weather - METU-NN1 ICTP-COST-USNSWP-CAWSES-INAF-INFN International Advanced School on Space Weather 2-19 May 2006, Trieste, Italy.
2007NEURAL NETWORKS, E. Tulunay, Y. Tulunay 1 COST 724 WHY NEURAL NETWORKS? E. Tulunay 1, Y. Tulunay 2 ODTU / METU 1.Dept. of Electrical and Electronics.
Neural Network Based Online Optimal Control of Unknown MIMO Nonaffine Systems with Application to HCCI Engines OBJECTIVES  Develop an optimal control.
EGU General Assembly 2013, 7 – 12 April 2013, Vienna, Austria This study: is pioneer in modeling the upper atmosphere, using space geodetic techniques,
5 th European Space Weather Week, November 2008, Brussels Operational implementation of the SWIF model in DIAS system Tsagouri Ioanna Koutroumbas.
Kp Forecast Models S. Wing 1, Y. Zhang 1, and J. R. Johnson 2 1 Applied Physics Laboratory, The Johns Hopkins University 2 Princeton Plasma Physics Laboratory,
[1] National Institute of Science & Technology Technical Seminar Presentation Amit Kumar Das Roll#EC APPLICATIONS OF ANN IN MICROWAVE ENGINEERING.
ESWW4, Brussels, Novembre 2006 Retrieving the EUV solar spectrum from a selected set of lines for space weather purposes: A review of theories, models.
Sub-ionospheric Point hmhm Ionosphere Earth Surface Ionospheric Piercing Point High Resolution GPS-TEC Gradients in the Northern Hemisphere Ionospheric.
Figure 3. Equinox plots (left) over the longitude of Pasadena, CA and (right) over the East coast of North America and West coast of South America. Figure.
Joint International GRACE Science Team Meeting and DFG SPP 1257 Symposium, Oct. 2007, GFZ Potsdam Folie 1 Retrieval of electron density profiles.
Solar Shield project - lessons learned and advances made (ccmc.gsfc.nasa.gov/Solar_Shield) Pulkkinen, A., M. Hesse, S. Habib, F. Policelli, B. Damsky,
UN/ESA/NASA/JAXA Workshop on Basic Space Science and the International Heliophysical Year 2007 hosted by the Korea Astronomy and Space Science Institute.
GALOCAD GAlileo LOcal Component for nowcasting and forecasting Atmospheric Disturbances R. Warnant*, G. Wautelet*, S. Lejeune*, H. Brenot*, J. Spits*,
EvoNet Flying Circus Introduction to Evolutionary Computation Brought to you by (insert your name) The EvoNet Training Committee The EvoNet Flying Circus.
05/09/2009 Slide 1 of 19 Practical Linear and Nonlinear Modelling of Environmental Data: A Case Study for River Flow Forecasting Hua-Liang Wei, Stephen.
Akram Bitar and Larry Manevitz Department of Computer Science
بسم الله الرحمن الرحيم Advanced Control Lecture one Mohammad Ali Fanaei Dept. of Chemical Engineering Ferdowsi University of Mashhad Reference: Smith &
VARIABILITY OF TOTAL ELECTRON CONTENT AT EUROPEAN LATITUDES A. Krankowski(1), L. W. Baran(1), W. Kosek (2), I. I. Shagimuratov(3), M. Kalarus (2) (1) Institute.
Speech Communication Lab, State University of New York at Binghamton Dimensionality Reduction Methods for HMM Phonetic Recognition Hongbing Hu, Stephen.
Software Engineering Education Framework Sun-Myung Hwang Computer Engineering Dept, Daejeon University, Republic of Korea Abstract. Software.
ECEN 679 Project 1 Topic 22: Fault Location Using Synchronized Phasors Po-Chen Chen Instructor: Dr. M. Kezunovic Mar. 3, 2014.
Michael Pezzopane et al. Assimilation of autoscaled data and regional and local ionospheric models as input source for a real-time 3-D IRI modeling: additional.
1 What Perimeter for a European Space Weather Programme? F. Lefeuvre 1st European SW week – 29 Nov 2004.
Chapter 8: Adaptive Networks

TWELFTH EUROPEAN SPACE WEATHER WEEK (ESWW12) OOSTENDE, BELGIUM, NOVEMBER, 2015 Alessandro Settimi (1)*, Michael Pezzopane (1), Marco Pietrella.
Example of prediction quality for the first (10 min) and last (3 h) prediction horizon element for the same sequence of WF Danilo power production events.
CHEE825 Fall 2005J. McLellan1 Nonlinear Empirical Models.
DEPARTMENT/SEMESTER ME VII Sem COURSE NAME Operation Research Manav Rachna College of Engg.
Dynamic Neural Network Control (DNNC): A Non-Conventional Neural Network Model Masoud Nikravesh EECS Department, CS Division BISC Program University of.
Abstract/INTRODUCTION Electron density (ED) data returned by the ARIEL 3 and ARIEL 4 Satellites have been separated into seasonal, diurnal, longitudinal.
0 7th ESWW, Bruges, Ionospheric Scintillations Propagation Model Y. Béniguel, J-P Adam IEEA, Courbevoie, France.
Sensitivity Analysis for the Purposes of Parameter Identification of a S. cerevisiae Fed-batch Cultivation Sensitivity Analysis for the Purposes of Parameter.
GALOCAD GAlileo LOcal Component for nowcasting and forecasting Atmospheric Disturbances R. Warnant, G. Wautelet, S. Lejeune, H. Brenot, J. Spits, S. Stankov.
Development of Fast and Accurate Neural Network Emulations of Long Wave Radiation for the NCEP Climate Forecast System Model V. Krasnopolsky, M. Fox-Rabinovitz,
Recommendations for space weather products and services in Europe: report on WG2 work Recommendations for space weather products and services in Europe:
© 2012 Anwendungszentrum GmbH Oberpfaffenhofen Idea by: Dr. Eng. Mohamed Zayan | 1.
Global and Regional Total Electron Content Anthony Mannucci, Xing Meng, Panagiotis Vergados, Attila Komjathy JPL/Caltech Collaborators: Sarah E. McDonald,
Fig. 1 Risk analysis Dynamical-information forecasting
The Space Weather and Navigation Systems (SWANS) project
Space weather challenges of the polar cap ionosphere
R. Warnant*, G. Wautelet*, S. Lejeune*, H. Brenot*,
The ELF Characterization of the Earth – Ionosphere Cavity
Pulkkinen, A. , M. Hesse, S. Habib, F. Policelli, B. Damsky, L
The Organizational Impacts on Software Quality and Defect Estimation
A Dynamic System Analysis of Simultaneous Recurrent Neural Network
Masoud Nikravesh EECS Department, CS Division BISC Program
MSE 606A Engineering Operations Research
Akram Bitar and Larry Manevitz Department of Computer Science
Presentation transcript:

Fourth European Space Weather Week 5-9 Nov TEC F ORECASTING D URING D ISTURBED S PACE W EATHER C ONDITIONS : A P OSSIBLE A LTERNATIVE TO THE IRI-2001 Yurdanur Tulunay 1, Erdem Turker Senalp 2, Ersin Tulunay 2 ODTU / METU Ankara, TURKEY (1)Dept. of Aerospace Eng., (2) Dept. of Electrical and Electronics Eng. ESWW4, 5-9 Nov. 2007, Brussels1

CONTENTS 1. Introduction 2. METU-NN-C 3. Data Organisation 4. Results 5. Conclusions 6. Acknowledgements 7. References ESWW4, 5-9 Nov. 2007, Brussels2

INTRODUCTION Ionospheric processes: highly nonlinear and dynamic TEC: key parameter in navigation and telecommunication METU Group: specialized on data driven modelling since 1990’s Recently developped:NN and Cascade Model based on the Hammerstein system modelling ESWW4, 5-9 Nov. 2007, Brussels3

Objective: to forecast TEC with higher accuracy under the influence of the extreme solar events. A case study: Solar Events of April 2002 A possible alternative to IRI-2001? ESWW4, 5-9 Nov. 2007, Brussels4

Why and How? Mathematical models of the ionospheric parameters (i.e. TEC) DIFFICULT Data-driven approaches (i.e. NN modelling) employed in parallel with the mathematical models Therefore, METU-NN-C using Bezier curves to represent nonlinearities ESWW4, 5-9 Nov. 2007, Brussels5

METU-NN-C TEC map over Europe constructed by METU-NN in 2004 and 2006 (Tulunay et al. [2004a, 2006] ) to increase the performance, a new technique, METU-NN-C developped [Senalp, 2007] ESWW4, 5-9 Nov. 2007, Brussels6

Fig. 1. Construction of the METU-NN-C Models [Senalp et al., 2007] ESWW4, 5-9 Nov. 2007, Brussels

Block 1: METU-NN model estimates the state-like variables for the METU-C ESWW4, 5-9 Nov. 2007, Brussels8 k : Discrete time index u Dp (k) : Inputs x Dq (k) : the internal variables of the METU-C

Block 2: Construction of Nonlinear Static Block of METU-C ESWW4, 5-9 Nov. 2007, Brussels9

Block 3:Construction of Linear Dynamic Block of METU-C ESWW4, 5-9 Nov. 2007, Brussels10

The Generic METU-NN-C Model ESWW4, 5-9 Nov. 2007, Brussels11

ESWW4, 5-9 Nov. 2007, Brussels12 Phases of Application of METU-NN-C: ‘Training’ ‘Test’ Inputs: Present value of TEC: TEC(k) Temporal parameters: Trigonometric comp. of time Bezier curves to represent NONLINEARITIES METU-NN: State-like variable estimator Output: Forecast TEC values one hour in advance

DATA ORGANIZATION 10-min GPS-TEC data of Chilbolton (51.8˚N; 1.26˚W) Hailsham (50.9˚N; 0.3˚E) Development Step: Training: Chilbolton TEC (April; May 2000, 2001) Validation: Chilbolton TEC (April-May 2000, 2001) Operation Step: Validation: Hailsham TEC (April; May 2002) SSN max. years ESWW4, 5-9 Nov. 2007, Brussels13

RESULTS

Fig. 2 Observed and one hour ahead Forecast Hailsham TEC values for April, May 2002 [Senalp et al., 2007] ESWW4, 5-9 Nov. 2007, Brussels15

Fig. 3. METU-NN-C and IRI-2001 during disturbed conditions (Hailsham) ESWW4, 5-9 Nov. 2007, Brussels16

- Fig. 4. Scatter diagrams and best-fit lines: in April 2002 at Hailsham ESWW4, 5-9 Nov. 2007, Brussels17 METU-NN-C IRI-2001

Table 1. Performance of models (18-19 April 2002; Hailsham) ESWW4, 5-9 Nov. 2007, Brussels18

CONCLUSIONS During disturbed SW conditions, METU-NN-C seems to show better performance over IRI-2001 METU-NN-C Model - more versatile and has got advantages provided that the representative data are available ESWW4, 5-9 Nov. 2007, Brussels19

Acknowledgements This work is partially supported by EU action of COST 296 (Mitigation of Ionospheric Effects on Radio Systems) TUBITAK-ÇAYDAG (105Y003) GPS-TEC data are kindly provided by Dr. Lj. R. Cander ESWW4, 5-9 Nov. 2007, Brussels20

References Altinay O., E.Tulunay, and Y. Tulunay (1997), Forecasting of ionospheric critical frequency using neural networks, Geophys. Res. Lett., 24(12), , and COST251 TD(96)016. Bézier, P.E. (1972), Numerical Control – Mathematics and Applications, Translated by Forrest A.R. and Pankhurst A.F., pp , John Wiley & Sons Ltd., England. Bilitza D. (2001), International Reference Ionosphere 2000, Radio Sci., 36(2), Hagan M.T., and M.B. Menhaj (1994), Training Feedforward Networks with the Marquard Algorithm, IEEE T. on Neural Networ., 5(6), Haykin S. (1999), Neural Networks: A Comprehensive Foundation, 2nd ed., pp. 2, 10, 21-22, 83-84, 169, 215, Prentice-Hall, Inc., New Jersey, USA. Ikonen E., and K. Najim (1999), Learning control and modelling of complex industrial processes, Overview report of the activities within the European Science Foundation's programme on Control of Complex Systems (COSY) Theme 3: Learning control, February Narendra K.S., and P.G. Gallman (1966), An Iterative Method for the Identification of Nonlinear Systems Using a Hammerstein Model, IEEE T. Automat. Contr., Radicella S.M., and E. Tulunay (2004), Space plasma effects on Earth-space and satellite-to-satellite communications: Working Group 4 overview, Ann. Geophys.-Italy, 47(2/3), Rogers D.F., and Adams J.A. (1990), Mathematical Elements for Computer Graphics, 2nd ed., pp , , McGraw-Hill, Inc., New York, USA. Senalp E.T., E. Tulunay, and Y. Tulunay (2006a), Neural Networks and Cascade Modeling Technique in System Identification, TAINN’2005, June. 2005, Cesme, Izmir, Turkey, ; Lect. Notes Artif. Int., 3949, ESWW4, 5-9 Nov. 2007, Brussels21

Senalp E.T., E. Tulunay, and Y. Tulunay (2006b), System Identification by using Cascade Modeling Technique with Bezier Curve Nonlinearity Representations, TAINN’2006, June 2006, Akyaka, Mugla, Turkey, Senalp E.T. (2007), Cascade Modeling of Nonlinear Systems, Ph-D Thesis, (Supervisor: E. Tulunay), Middle East Technical University, Dept. of Electrical and Electronics Eng., Ankara, Turkey, August Senalp E.T., Y. Tulunay, and E. Tulunay (2007), Total Electron Content (TEC) Forecasting by Cascade Modeling: A Possible Alternative to the IRI-2001, Radio Sci., (submitted) Stamper R., A. Belehaki, D. Buresova, Lj.R. Cander, I. Kutiev, M. Pietrella, I. Stanislawska, S. Stankov, I. Tsagouri, Y.K. Tulunay, and B. Zolesi (2004), Nowcasting, forecasting and warning for ionospheric propagation: tools and methods, Ann. Geophys.-Italy, 47(2/3), Tulunay, E. (1991), Introduction to Neural Networks and their Application to Process Control, in Neural Networks Advances and Applications, edited by E. Gelenbe, pp , Elsevier Science Publishers B.V., North-Holland. Tulunay E., E.T. Senalp, Lj.R. Cander, Y.K. Tulunay, A.H. Bilge, E. Mizrahi, S.S. Kouris, N. Jakowski (2004a), Development of algorithms and software for forecasting, nowcasting and variability of TEC, Ann. Geophys.-Italy, 47(2/3), Tulunay E., Y. Tulunay, E.T. Senalp, Lj.R. Cander (2004b), Forecasting GPS TEC Using the Neural Network Technique “A Further Demonstration”, Bulgarian Geophysical Journal, 30(1-4), Tulunay E., E.T. Senalp, S.M. Radicella, Y. Tulunay (2006), Forecasting Total Electron Content Maps by Neural Network Technique, Radio Sci., 41(4), RS4016. Tulunay Y., E. Tulunay, and E.T. Senalp (2001), An Attempt to Model the Influence of the Trough on HF Communication by Using Neural Network, Radio Sci., 36(5), Tulunay Y., E. Tulunay, and E.T. Senalp (2004a), The Neural Network Technique-1: A General Exposition, Adv. Space Res., 33(6), Tulunay Y., E. Tulunay, and E.T. Senalp (2004b), The Neural Network Technique-2: An Ionospheric Example Illustrating its Application, Adv. Space Res., 33(6), ESWW4, 5-9 Nov. 2007, Brussels22