Date : 2014/09/18 Author : Niket Tandon, Gerard de Melo, Fabian Suchanek, Gerhard Weikum Source : WSDM’14 Advisor : Jia-ling Koh Speaker : Shao-Chun Peng.

Slides:



Advertisements
Similar presentations
Date: 2014/05/06 Author: Michael Schuhmacher, Simon Paolo Ponzetto Source: WSDM’14 Advisor: Jia-ling Koh Speaker: Chen-Yu Huang Knowledge-based Graph Document.
Advertisements

YAGO: A Large Ontology from Wikipedia and WordNet Fabian M. Suchanek, Gjergji Kasneci, Gerhard Weikum Max-Planck-Institute for Computer Science, Saarbruecken,
Date : 2013/05/27 Author : Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae Lee, Fei Wu, Reynold Xin, Gong Yu Source : SIGMOD’12 Speaker.
Linking Named Entity in Tweets with Knowledge Base via User Interest Modeling Date : 2014/01/22 Author : Wei Shen, Jianyong Wang, Ping Luo, Min Wang Source.
A UTOMATICALLY A CQUIRING A S EMANTIC N ETWORK OF R ELATED C ONCEPTS Date: 2011/11/14 Source: Sean Szumlanski et. al (CIKM’10) Advisor: Jia-ling, Koh Speaker:
DOMAIN DEPENDENT QUERY REFORMULATION FOR WEB SEARCH Date : 2013/06/17 Author : Van Dang, Giridhar Kumaran, Adam Troy Source : CIKM’12 Advisor : Dr. Jia-Ling.
Mining Query Subtopics from Search Log Data Date : 2012/12/06 Resource : SIGIR’12 Advisor : Dr. Jia-Ling Koh Speaker : I-Chih Chiu.
How computers answer questions An introduction to machine learning Peter Barnum August 7, 2008.
Semantic Video Classification Based on Subtitles and Domain Terminologies Polyxeni Katsiouli, Vassileios Tsetsos, Stathes Hadjiefthymiades P ervasive C.
Saarbrucken / Germany ¨
(ACM KDD 09’) Prem Melville, Wojciech Gryc, Richard D. Lawrence
Outline 1.Introduction 2.Harvesting Classes 3.Harvesting Facts 4.Common Sense Knowledge 5.Knowledge Consolidation 6.Web Content Analytics 7.Wrap-Up from.
Web Usage Mining with Semantic Analysis Date: 2013/12/18 Author: Laura Hollink, Peter Mika, Roi Blanco Source: WWW’13 Advisor: Jia-Ling Koh Speaker: Pei-Hao.
Tag Clouds Revisited Date : 2011/12/12 Source : CIKM’11 Speaker : I- Chih Chiu Advisor : Dr. Koh. Jia-ling 1.
Leveraging Conceptual Lexicon : Query Disambiguation using Proximity Information for Patent Retrieval Date : 2013/10/30 Author : Parvaz Mahdabi, Shima.
Name : Emad Zargoun Id number : EASTERN MEDITERRANEAN UNIVERSITY DEPARTMENT OF Computing and technology “ITEC547- text mining“ Prof.Dr. Nazife Dimiriler.
Mining High Utility Itemsets without Candidate Generation Date: 2013/05/13 Author: Mengchi Liu, Junfeng Qu Source: CIKM "12 Advisor: Jia-ling Koh Speaker:
Reyyan Yeniterzi Weakly-Supervised Discovery of Named Entities Using Web Search Queries Marius Pasca Google CIKM 2007.
Push Singh & Tim Chklovski. AI systems need data – lots of it! Natural language processing: Parsed & sense-tagged corpora, paraphrases, translations Commonsense.
A Probabilistic Graphical Model for Joint Answer Ranking in Question Answering Jeongwoo Ko, Luo Si, Eric Nyberg (SIGIR ’ 07) Speaker: Cho, Chin Wei Advisor:
Dimitrios Skoutas Alkis Simitsis
Date: 2014/02/25 Author: Aliaksei Severyn, Massimo Nicosia, Aleessandro Moschitti Source: CIKM’13 Advisor: Jia-ling Koh Speaker: Chen-Yu Huang Building.
ON THE SELECTION OF TAGS FOR TAG CLOUDS (WSDM11) Advisor: Dr. Koh. Jia-Ling Speaker: Chiang, Guang-ting Date:2011/06/20 1.
Mining Social Networks for Personalized Prioritization Shinjae Yoo, Yiming Yang, Frank Lin, II-Chul Moon [KDD ’09] 1 Advisor: Dr. Koh Jia-Ling Reporter:
Date : 2014/01/14 Author : Thanh-Son Nguyen, Hady W. Lauw, Panayiotis Tsaparas Source : CIKM’13 Advisor : Jia-ling Koh Speaker : Shao-Chun Peng.
Binxing Jiao et. al (SIGIR ’10) Presenter : Lin, Yi-Jhen Advisor: Dr. Koh. Jia-ling Date: 2011/4/25 VISUAL SUMMARIZATION OF WEB PAGES.
Fabian M. SuchanekLEILA - Learning to Extract Information by Linguistic Analysis 1 LEILA – Learning to Extract Information by Linguistic Analysis presented.
LOGO Finding High-Quality Content in Social Media Eugene Agichtein, Carlos Castillo, Debora Donato, Aristides Gionis and Gilad Mishne (WSDM 2008) Advisor.
1 Teaching-Material Design Center An ontology-based system for customizing reusable Source: Computers and Education, Vol.46, Issue: 4, May, 2006, pp
Graph-based Text Classification: Learn from Your Neighbors Ralitsa Angelova , Gerhard Weikum : Max Planck Institute for Informatics Stuhlsatzenhausweg.
LOGO 1 Corroborate and Learn Facts from the Web Advisor : Dr. Koh Jia-Ling Speaker : Tu Yi-Lang Date : Shubin Zhao, Jonathan Betz (KDD '07 )
Measuring Semantic Similarity between Words Using Web Search Engines WWW 07.
Institute of Computing Technology, Chinese Academy of Sciences 1 A Unified Framework of Recommending Diverse and Relevant Queries Speaker: Xiaofei Zhu.
1 A Web Search Engine-Based Approach to Measure Semantic Similarity between Words Presenter: Guan-Yu Chen IEEE Trans. on Knowledge & Data Engineering,
Finding Experts Using Social Network Analysis 2007 IEEE/WIC/ACM International Conference on Web Intelligence Yupeng Fu, Rongjing Xiang, Yong Wang, Min.
Summary Knowledge Bases from Web are Real, Big & Useful: Entities, Classes & Relations Key Asset for Intelligent Applications: Semantic Search, Question.
2015/12/121 Extracting Key Terms From Noisy and Multi-theme Documents Maria Grineva, Maxim Grinev and Dmitry Lizorkin Proceeding of the 18th International.
Date: 2013/10/23 Author: Salvatore Oriando, Francesco Pizzolon, Gabriele Tolomei Source: WWW’13 Advisor: Jia-ling Koh Speaker: Chen-Yu Huang SEED:A Framework.
Tutorial: Knowledge Bases for Web Content Analytics
1 Adaptive Subjective Triggers for Opinionated Document Retrieval (WSDM 09’) Kazuhiro Seki, Kuniaki Uehara Date: 11/02/09 Speaker: Hsu, Yu-Wen Advisor:
LINDEN : Linking Named Entities with Knowledge Base via Semantic Knowledge Date : 2013/03/25 Resource : WWW 2012 Advisor : Dr. Jia-Ling Koh Speaker : Wei.
IMRank: Influence Maximization via Finding Self-Consistent Ranking
Date: 2013/4/1 Author: Jaime I. Lopez-Veyna, Victor J. Sosa-Sosa, Ivan Lopez-Arevalo Source: KEYS’12 Advisor: Jia-ling Koh Speaker: Chen-Yu Huang KESOSD.
CONTEXTUAL SEARCH AND NAME DISAMBIGUATION IN USING GRAPHS EINAT MINKOV, WILLIAM W. COHEN, ANDREW Y. NG SIGIR’06 Date: 2008/7/17 Advisor: Dr. Koh,
Predicting Short-Term Interests Using Activity-Based Search Context CIKM’10 Advisor: Jia Ling, Koh Speaker: Yu Cheng, Hsieh.
Sentiment Analysis Using Common- Sense and Context Information Basant Agarwal 1,2, Namita Mittal 2, Pooja Bansal 2, and Sonal Garg 2 1 Department of Computer.
Short Text Similarity with Word Embedding Date: 2016/03/28 Author: Tom Kenter, Maarten de Rijke Source: CIKM’15 Advisor: Jia-Ling Koh Speaker: Chih-Hsuan.
ClusCite:Effective Citation Recommendation by Information Network-Based Clustering Date: 2014/10/16 Author: Xiang Ren, Jialu Liu,Xiao Yu, Urvashi Khandelwal,
QUERY-PERFORMANCE PREDICTION: SETTING THE EXPECTATIONS STRAIGHT Date : 2014/08/18 Author : Fiana Raiber, Oren Kurland Source : SIGIR’14 Advisor : Jia-ling.
ORec : An Opinion-Based Point-of-Interest Recommendation Framework
Information Organization: Overview
Title {Calibri 36 Font Size}
HowToKB: Mining HowTo Knowledge from Online Communities
Result of Ontology Alignment with RiMOM at OAEI’06
Speaker: Jim-an tsai advisor: professor jia-lin koh
WebChild: Harvesting and Organizing Commonsense Knowledge from Web
Commonsense Knowledge Acquisition and Applications
Centrality Bias Measure for High Density QR Code Module Recognition
Acquiring Comparative Commonsense Knowledge from the Web
Text Categorization Document classification categorizes documents into one or more classes which is useful in Information Retrieval (IR). IR is the task.
An Empirical Study of Property Collocation on Large Scale of Knowledge Base 龚赛赛
Commonsense in Parts: Mining Part-Whole Relations from the Web and Image Tags Niket Tandon1, Charles Hariman1, Jacopo Urbani1,2, Anna.
Measuring the Latency of Depression Detection in Social Media
Enriching Taxonomies With Functional Domain Knowledge
Date: 2012/11/15 Author: Jin Young Kim, Kevyn Collins-Thompson,
Wiki3C: Exploiting Wikipedia for Context-aware Concept Categorization
Title Introduction: Discussion & Conclusion: Methods & Results:
Information Organization: Overview
Aishwarya Singh 03/18/2019 Acquiring Comparative Commonsense Knowledge from the Web Niket Tandon, Gerard de Melo, Gerhard Weikum.
Title Firstname Lastname 1, Firstname Lastname 2 and Firstname Lastname 3 1 Affiliations. Dummy text, dummy text, dummy text 2 Affiliations. Dummy text,
Presentation transcript:

Date : 2014/09/18 Author : Niket Tandon, Gerard de Melo, Fabian Suchanek, Gerhard Weikum Source : WSDM’14 Advisor : Jia-ling Koh Speaker : Shao-Chun Peng 1 WebChild: Harvesting and Organizing Commonsense Knowledge from the Web

Outline 2 Introduction Approach Experimental Conclusion

Introduction 3 What is knowledge bases ? Web search text analytics Recommendations in social media

Introduction 4 Motivation Computers completely lack this kind of commonsense knowledge Round and red …………

Introduction 5 How about teach computer? Round and red …………

Introduction 6 Purpose Automatically extracting and cleaning commonsense properties from the Web

Introduction 7 salient characteristics and unique qualities Fine-grained assertions Disambiguated arguments Minimal supervision

Outline 8 Introduction Approach Range Population Domain Population Computing Assertions Experimental Conclusion

Sub task 9 Range Population Domain Population Computing Assertions

Range Population 10 Candidate Gathering Graph Construction EdgeWeighting Label Propagation (LP) hasTaste: {delicious, spicy, hot, sweet, etc...}

Range Population 11 Candidate Gathering Google N-gram corpus(5-gram) checking for the presence of the word r, any of its synonyms adj. for all relation

Range Population 12 Graph Construction 3 kinds of edge edges among words edges between two senses u -ai and w -aj edges between words and senses

Range Population 13 EdgeWeighting edges among words edges between two senses u -ai and w -aj taxonomic relatedness within WordNet [17] edges between words and senses the sense frequencies as a basis for edge weights

Range Population 14 Label Propagation (LP) A B D C A B D C Relaton:0.8 Dummy:0.2 Relaton:0.7 Dummy: Relaton:0.8 Dummy: Relaton:0.1 Dummy:0.9

Domain Population 15 Candidate Gathering* Graph Construction EdgeWeighting Label Propagation (LP) Beef: hasTaste sour-a 2 :the taste experience when vinegar or lemon juice is taken.. (vinegar, sour-a 2 ) and (lemon juice, sour-a 2 )

Computing Assertions 16 Graph Construction* EdgeWeighting* Label Propagation (LP)

Outline 17 Introduction Approach Experimental Conclusion

Range Population 18

Domain Population 19

Computing Assertions 20

Outline 21 Introduction Approach Experimental Conclusion