Introduction to Automatic Control The Laplace Transform Li Huifeng Tel:82339276

Slides:



Advertisements
Similar presentations
首 页 首 页 上一页 下一页 本讲内容 投影法概述三视图形成及其投影规律平面立体三视图、尺寸标注 本讲内容 复习: P25~P31 、 P84~P85 作业: P7, P8, P14[2-32(2) A3 (1:1)]
Advertisements

第十二章 常微分方程 返回. 一、主要内容 基本概念 一阶方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程.
概率统计( ZYH ) 节目录 2.1 随机变量与分布函数 2.2 离散型随机变量的概率分布 2.3 连续型随机变量的概率分布 第二章 随机变量及其分布.
第八章 多元函数微分法 及其应用 返回 高等数学( XAUAT ) 练习题 解答 练习题 解答 重点难点 基本概念 计算方法 练习题 典型例题 定理结论 习题课结构.
第 12 章位运算 C 语言兼具高级语言及低级语言的特性,因此 适合编写系统软件。 C 语言具备低级语言的特性 就在于它能直接对硬件进行操作,即位运算。 所谓位运算是指,按二进制位进行的运算。 例如,将一个存储单元中各二进位左移或右移一 位等。
4 第四章 矩阵 学时:  18 学时。 教学手段:  讲授和讨论相结合,学生课堂练习,演练习题与辅导答疑相结合。 基本内容和教学目的:  基本内容: 矩阵的运算,可逆矩阵,初等矩阵及其性质和意义, 分块矩阵。  教学目的:  1 .使学生理解和掌握矩阵等价的相关理论  2 .能熟练地进行矩阵的各种运算.
第二十三讲 7.3 利用频率采样法设计 FIR 滤波器. 回顾窗函数设计法: 得到的启发:能否在频域逼近? 用什么方法逼近? 通过加窗实 现时域逼近.
3 .计算题(原创) 草酸的分布分数图为 图中 A , B , C , D 四点的关系如何?请用数学推导进行说 明。
Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011.
1 当恒温恒压时:  T,p G m =  B  B 将相应反应物质的化学位表达式代入上式,即可 求出该反应的摩尔反应的吉氏函数变  T,p G m 。 各类反应的标准平衡常数 由第六章 热力学第二定律中我们知道,包括化学 变化在内的任何过程的吉氏函数变为  G=-Sdt+Vdp+
第 4 章 抽象解释 内容概述 以一种独立于编程语言的方式,介绍抽象解释的 一些本质概念 – 将 “ 程序分析对语言语义是正确的 ” 这个概念公式 化 – 用 “ 加宽和收缩技术 ” 来获得最小不动点的较好的 近似,并使所需计算步数得到限制 – 用 “ 伽罗瓦连接和伽罗瓦插入 ” 来把代价较大的属 性空间用代价较小的属性空间来代替.
5 第五章 二次型 学时: 10 学时。 教学手段:  讲授和讨论相结合,学生课堂练习,演练习题与辅导答疑相结合。 基本内容和教学目的:  基本内容: 二次型的矩阵表示、标准型、唯一性、正定二次型。  教学目的:  1 、了解二次型的概念,二次型的矩阵表示。  2 、会化二次型为标准型,规范性。
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第六十二讲 ) 离散数学. 最后,我们构造能识别 A 的 Kleene 闭包 A* 的自动机 M A* =(S A* , I , f A* , s A* , F A* ) , 令 S A* 包括所有的 S A 的状态以及一个 附加的状态 s.
分析化学与无机化学中溶液 pH 值计算的异同比较 谢永生  分析化学是大学化学系的一门基础课,课 时较少,其内容主要是无机物的化学分析。 分析化学是以无机化学作为基础的,我们 都是在已掌握一定的无机化学知识后才学 习分析化学 。所以在分析 化学的学习中会 重复许多无机化学内容,造成学习没有兴.
1 为了更好的揭示随机现象的规律性并 利用数学工具描述其规律, 有必要引入随 机变量来描述随机试验的不同结果 例 电话总机某段时间内接到的电话次数, 可用一个变量 X 来描述 例 检测一件产品可能出现的两个结果, 也可以用一个变量来描述 第五章 随机变量及其分布函数.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第二章 数值微分和数值积分.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样 的一种手段。在实际中,数据不可避免的会有误差,插值函 数会将这些误差也包括在内。
1 第二章 误差和分析数据的处理. 2 ● 内容提要 1. 误差及其产生原因 2. 准确度与精密度 3. 有效数字及其计算规则 4. 分析数据的处理.
例9:例9: 第 n-1 行( -1 )倍加到第 n 行上,第( n-2 ) 行( -1 )倍加到第 n-1 行上,以此类推, 直到第 1 行( -1 )倍加到第 2 行上。
主讲教师:陈殿友 总课时: 124 第八讲 函数的极限. 第一章 机动 目录 上页 下页 返回 结束 § 3 函数的极限 在上一节我们学习数列的极限,数列 {x n } 可看作自变量 为 n 的函数: x n =f(n),n ∈ N +, 所以,数列 {x n } 的极限为 a, 就是 当自变量 n.
第十一章 曲线回归 第一节 曲线的类型与特点 第二节 曲线方程的配置 第三节 多项式回归.
实验一: 信号、 系统及系统响应 1 、实验目的 1 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时 域采样定理的理解。 2 熟悉时域离散系统的时域特性。 3 利用卷积方法观察分析系统的时域特性。 4 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里 叶变换对连续信号、 离散信号及系统响应进行频域分析。
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第二十五讲 ) 离散数学. 定理 群定义中的条件 ( 1 )和( 2 )可以减弱如下: ( 1 ) ’ G 中有一个元素左壹适合 1 · a=a; ( 2 ) ’ 对于任意 a ,有一个元素左逆 a -1 适 合 a -1 ·
6 第一章 线性空间 学时: 16 学时。 教学手段:  讲授和讨论相结合,学生课堂练习,演练习题与辅导答疑相结合。 基本内容和教学目的:  基本内容:集合、映射的概念;线性空间的定义与简单性质、维 数、基与坐标、过渡矩阵的概念;基变换与坐标变换;线性子空 间、子空间的交与和、子空间的直和;线性空间的同构等概念。
第二章 随机变量及其分布 第一节 随机变量及其分布函数 一、随机变量 用数量来表示试验的基本事件 定义 1 设试验 的基本空间为 , ,如果对试验 的每一个基 本事件 ,规定一个实数记作 与之对应,这样就得到一个定义在基本空 间 上的一个单值实函数 ,称变量 为随机变量. 随机变量常用字母 、 、 等表示.或用.
第 4 章 过程与变量的作用范围. 4.1 Visual Basic 的代码模块 Visual Basic 的应用程序是由过程组成的, 过程代码存放在模块中。 Visual Basic 提供了 三类模块,它们是窗体模块、标准模块和类 模块。 窗体模块 窗体模块是大多数 Visual Basic.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十九讲 ) 离散数学. 例 设 S 是一个集合, ρ ( S )是 S 的幂集合,集合 的交( ∩ ),并(∪)是 ρ ( S )上的两个代数运算, 于是,( ρ ( S ), ∩ ,∪) 是一个格。而由例 知.
实验三: 用双线性变换法设计 IIR 数字滤波器 一、实验目的 1 熟悉用双线性变换法设计 IIR 数字滤波器的原理与方法。 2 掌握数字滤波器的计算机仿真方法。 3 通过观察对实际心电图信号的滤波作用, 获得数字滤波的感性知 识。
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第四十五讲 ) 离散数学 模 格 定义 设( L , ≤ ) 是一个格,对任意 a , b , c ∈ L , 如果 a≤b ,都有 a  ( b×c ) = b× ( a  c ) 则称( L , ≤ )为模格。
第二章 贝叶斯决策理论 3学时.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 4 章 非线性方程求根 非线性科学是当今科学发展的一个重要研究方向,而非线性 方程的求根也成了一个不可缺的内容。但是,非线性方程的求根 非常复杂。
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 5 章 解线性方程组的直接法 实际中,存在大量的解线性方程组的问题。很多数值方 法到最后也会涉及到线性方程组的求解问题:如样条插值的 M 和.
主讲教师:陈殿友 总课时: 124 第十一讲 极限的运算法则. 第一章 二、 极限的四则运算法则 三、 复合函数的极限运算法则 一 、无穷小运算法则 机动 目录 上页 下页 返回 结束 §5 极限运算法则.
在发明中学习 线性代数 概念的引入 李尚志 中国科学技术大学. 随风潜入夜 : 知识的引入 之一、线性方程组的解法 加减消去法  方程的线性组合  原方程组的解是新方程的解 是否有 “ 增根 ” ?  互为线性组合 : 等价变形  初等变换  高斯消去法.
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
第 3 章 控制流分析 内容概述 – 定义一个函数式编程语言,变量可以指称函数 – 以 dynamic dispatch problem 为例(作为参数的 函数被调用时,究竟执行的是哪个函数) – 规范该控制流分析问题,定义什么是可接受的控 制流分析 – 定义可接受分析在语义模型上的可靠性 – 讨论分析算法.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
第二十四讲 相位延时系统 相位超前系统 全通系统. 一、最小与最大相位延时系统、最小 与最大相位超前系统 LSI 系统的系统函数: 频率响应:
编译原理总结. 基本概念  编译器 、解释器  编译过程 、各过程的功能  编译器在程序执行过程中的作用  编译器的实现途径.
11.5 含源二端口网络 章节内容 (2) 11.6 运算放大器电路 11.7 回转器和负阻抗变换器 11.8 应用.
周期信号的傅里叶变换. 典型非周期信号 ( 如指数信号, 矩形信号等 ) 都是满足绝对可 积(或绝对可和)条件的能量信号,其傅里叶变换都存在, 但绝对可积(或绝对可和)条件仅是充分条件, 而不是必 要条件。引入了广义函数的概念,在允许傅里叶变换采用 冲激函数的前提下, 使许多并不满足绝对可积条件的功率.
§8-3 电 场 强 度 一、电场 近代物理证明:电场是一种物质。它具有能量、 动量、质量。 电荷 电场 电荷 电场对外的表现 : 1) 电场中的电荷要受到电场力的作用 ; 2) 电场力可移动电荷作功.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 8 章 常微分方程 实际中,很多问题的数学模型都是微分方程。我们 可以研究它们的一些性质。但是,只有极少数特殊的方程 有解析解。对于绝大部分的微分方程是没有解析解的。
初中几何第三册 弦切角 授课人: 董清玲. 弦切角 一、引入新课: 什么是圆心角、圆周角、圆周角定理的内容是什么? 顶点在圆心的角叫圆心角。 顶点在圆上,并且两边都和圆相交的角叫做圆周角。 定理:一条弧所对的圆周角等于它所对的圆心角的一半。 A B′ C B O.
Department of Mathematics 第二章 解析函数 第一节 解析函数的概念 与 C-R 条件 第二节 初等解析函数 第三节 初等多值函数.
网上预约集港操作指南 一、登录系统 登陆下面图片显示网址:输入堆场用户名、密码和校验码登陆系统.
1-4 节习题课 山东省淄博第一中学 物理组 阚方海. 2 、位移公式: 1 、速度公式: v = v 0 +at 匀变速直线运动规律: 4 、平均速度: 匀变速直线运动 矢量式 要规定正方向 统一单位 五个量知道了三 个量,就能求出 其余两个量 3 、位移与速度关系:
《 UML 分析与设计》 交互概述图 授课人:唐一韬. 知 识 图 谱知 识 图 谱知 识 图 谱知 识 图 谱.
Automatic Control Theory School of Automation NWPU Teaching Group of Automatic Control Theory.
1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform.
1 、如果 x + 5 > 4 ,那么两边都 可得 x >- 1 2 、在- 3y >- 4 的两边都乘以 7 可得 3 、在不等式 — x≤5 的两边都乘以- 1 可得 4 、将- 7x — 6 < 8 移项可得 。 5 、将 5 + a >- 2 a 移项可得 。 6 、将- 8x < 0.
1 Signals and Systems Lecture 26 Properties of Laplace Transform Analysis LTI System using LT System Function.
名探柯南在侦查一个特大盗窃集团过程 中,获得藏有宝物的密码箱,密码究竟 是什么呢?请看信息: ABCDEF( 每个字 母表示一个数字 ) A :是所有自然数的因数 B :既有因数 5 ,又是 5 的倍数 C :既是偶数又是质数 D :既是奇数又是合数 EF :是 2 、 3 、 5 的最小公倍数.
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
请同学们仔细观察下列两幅图有什么共同特点? 如果两个图形不仅形状相同,而且每组对应点所在的直线 都经过同一点, 那么这样的两个图形叫做位似图形, 这个点叫做位 似中心.
第三章 正弦交流电路.
7 生产费用在完工产品与在产 品之间分配的核算. 2 第七章 生产费用在完工产品与在产品之 间的分配  知识点 :  理解在产品的概念  掌握生产费用在完工产品与在产品之间的分 配.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
第四章 不定积分. 二、 第二类换元积分法 一、 第一类换元积分法 4.2 换元积分法 第二类换元法 第一类换元法 基本思路 设 可导, 则有.
逻辑设计基础 1 第 7 章 多级与(或)非门电路 逻辑设计基础 多级门电路.
1 第 4 章 速度瞬心及其应用 ● 利用速度瞬心进行机构的速度分析 ● 将低副机构转变为高副机构 ( 瞬心线机 构,共轭曲线机构) ● 用低副机构的分析方法对高副机构进 行结构和运动分析 ( 高副低代 )
人 有 悲 欢 离 合, 月有阴晴圆缺。月有阴晴圆缺。 华师大版七年级数学第二册 海口市第十中学 数学组 吴锐.
§5.6 利用希尔伯特 (Hilbert) 变换 研究系统的约束特性 希尔伯特变换的引入 可实现系统的网络函数与希尔伯特变换.
1 第三章 数列 数列的概念 考点 搜索 ●数列的概念 ●数列通项公式的求解方法 ●用函数的观点理解数列 高考 猜想 以递推数列、新情境下的 数列为载体, 重点考查数列的通 项及性质, 是近年来高考的热点, 也是考题难点之所在.
目录 上页 下页 返回 结束 二、无界函数反常积分的审敛法 * 第五节 反常积分 无穷限的反常积分 无界函数的反常积分 一、无穷限反常积分的审敛法 反常积分的审敛法  函数 第五章 第五章.
本章讨论有限自由度结构系统,在给定载荷和初始条件激励下的系统动力响应计算方法。 第 六 章
§7.2 估计量的评价标准 上一节我们看到,对于总体 X 的同一个 未知参数,由于采用的估计方法不同,可 能会产生多个不同的估计量.这就提出一 个问题,当总体的一个参数存在不同的估 计量时,究竟采用哪一个好呢?或者说怎 样评价一个估计量的统计性能呢?下面给 出几个常用的评价准则. 一.无偏性.
Presentation transcript:

Introduction to Automatic Control The Laplace Transform Li Huifeng Tel:

Introduction to Automatic Control The Laplace Transform Module objectives When you have completed this module you should be able to: –Apply the Laplace transform to differential equations. –Solve linear differential equations. –Apply the main theorems of the Laplace transform. –Know how useful this techniques is to handle dynamical systems

Introduction to Automatic Control The Laplace Transform Subsections Definition Correspondences of the Laplace transform Main theorems of the Laplace transform The inverse Laplace transform Solving linear differential equations using the Laplace transform

Introduction to Automatic Control The Laplace Transform How to understand LT The Laplace transform is conceptually similar to multiplication via logarithms log(axb) = log(a) + log(b) To multiply a by b –Compute logarithms of a and b –Add these logarithms –Inverse logarithm of sum gives product of a and b.

Introduction to Automatic Control The Laplace Transform Linear differential equation Time domain solution Laplace Solution Laplace transformed Equation Convolution Time Domain Laplace Domain Laplace Transform Inverse Laplace Transform Algebraic manipulation

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform Definition 函数 f(t) , t 为实变量,如果线性积分 存在,则称其为函数 f(t) 的拉普拉斯变换。变换后的 函数是复变量 s 的函数,记作 F(s) 或 L[f(t)] ,即: 称 F(s) 为 f(t) 的变换函数或象函数,而 f(t) 为 F(s) 的原 函数。

Introduction to Automatic Control The Laplace Transform Correspondences of the Laplace transform Table 2.1: Corresponding elements of the Laplace transform or Textbook Page 21Table 2.1: Corresponding elements of the Laplace transform

Introduction to Automatic Control The Laplace Transform 几种典型函数的拉氏变换

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform Euler equation

Introduction to Automatic Control The Laplace Transform Equating real & imaginary parts yields:

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform 典型函数的拉氏变换形式

Introduction to Automatic Control The Laplace Transform Main theorems of the Laplace transform ① Superposition theorem( 叠加定理 ): 各函数和的拉氏变换=各函数拉氏变换的和

Introduction to Automatic Control The Laplace Transform ② Similarity theorem: ( 比例尺改变 )

Introduction to Automatic Control The Laplace Transform ③ Real Shifting theorem( 延时定理 ):

Introduction to Automatic Control The Laplace Transform 提示: f(t) 相当于 t· 1(t) 在 时间上延迟了一个  值。 解:解: 例1例1

Introduction to Automatic Control The Laplace Transform ④ Complex Shifting theorem( 衰减定理) :

Introduction to Automatic Control The Laplace Transform 解:解: 例2例2

Introduction to Automatic Control The Laplace Transform ⑤ Derivative theorem: )0(f)0(fs)0(fs)s(Fs] dt )t(fd [L )0(f)0(sf)s(Fs] dt )t(fd [L )0(f)s(sF] dt )t(df [L )1n('2n1nn n n '2 2 2      拉氏变换将原函数求导数的运算转换为 “ 象函数 乘s后减初值 ” 的代数运算。

Introduction to Automatic Control The Laplace Transform ⑥ Complex differentiation theorem: ( 不要求掌握 )

Introduction to Automatic Control The Laplace Transform ⑦ Integral theorem: 拉氏变换将原函数求积分的运算转换为 “ 象函数除 以s后加初值 ” 的代数运算。

Introduction to Automatic Control The Laplace Transform ⑧ Initial value theorems:

Introduction to Automatic Control The Laplace Transform Given: Find f(0) 解:解:

Introduction to Automatic Control The Laplace Transform ⑨ final value theorems:

Introduction to Automatic Control The Laplace Transform Given: Find. 解:解:

Introduction to Automatic Control The Laplace Transform ⑩ Convolution in the time domain: ( 不要求掌握 )

Introduction to Automatic Control The Laplace Transform 11Convolution in the frequency domain: ( 不要求掌握 ) 拉氏变换性质的证明

Introduction to Automatic Control The Laplace Transform The inverse Laplace transform 定义: 由象函数 F(s) 求其原函数 f(t) 的运算称 为拉氏反变换。

Introduction to Automatic Control The Laplace Transform Partial Fraction Expansion 思路: 将 F(s) 分解成一些简单的有理分式函数之和, 然后由拉氏变换表一一查出对应的反变换函 数,即得所求的原函数 f(t) 。

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform 将 F(s) 的分母多项式 A(s) 进行因式分解, 即写为: A(s) = (s - s 1 )(s - s 2 )…(s - s n ) 式中, s 1, s 2, …s n 为 A(s) = 0 的根。 分两种情况讨论: 1.A(s) = 0 无重根 2.A(s) = 0 有重根

Introduction to Automatic Control The Laplace Transform 1. A(s)=0 无重根情况 可将 F(s) 换写为 n 个部分分式之和,每个分式 的分母都是 A(s) 的一个因式。 关键问题 : 确定每个部分分式中的待定常数 C i 。

Introduction to Automatic Control The Laplace Transform 确定待定常数 C i

Introduction to Automatic Control The Laplace Transform 代入 C i 即可求得 f(t):

Introduction to Automatic Control The Laplace Transform 确定待定系数 所以 例3例3

Introduction to Automatic Control The Laplace Transform 要点: 明确四个步骤,语言表述清晰

Introduction to Automatic Control The Laplace Transform 分子分母同阶的例子: 所以 例4例4

Introduction to Automatic Control The Laplace Transform 分母有复数根的例子: 例5例5

Introduction to Automatic Control The Laplace Transform 求Ci求Ci 所以 欧拉方程

Introduction to Automatic Control The Laplace Transform 欧拉方程

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform 2. A(s)=0 有重根情况

Introduction to Automatic Control The Laplace Transform 确定待定常数 C i

Introduction to Automatic Control The Laplace Transform 例6例6

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform Solving linear differential equations using the Laplace transform Linear differential equation Time domain solution Laplace Solution Laplace transformed Equation Convolution Time Domain Laplace Domain Laplace Transform Inverse Laplace Transform Algebraic manipulation 1 2 3

Introduction to Automatic Control The Laplace Transform 1 2 3

Introduction to Automatic Control The Laplace Transform 三个步骤 : ①代入初始条件对微分方程进行拉氏变换; ②解变换方程 ( 代数方程 ) ,求出响应函数的拉 氏变换式; ③用部分分式法求拉氏反变换,得到微分方程 的解。

Introduction to Automatic Control The Laplace Transform 分析 : 例7例7

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform

Introduction to Automatic Control The Laplace Transform 解:解: Step1: For a ODE w/initial conditions, apply Laplace transform to each term. Step2: Solve for Y(s)

Introduction to Automatic Control The Laplace Transform Step3: Apply partial fraction expansion to obtain inverse Laplace transform.

Introduction to Automatic Control The Laplace Transform l ODE w/initial conditions l Apply Laplace transform to each term l Solve for Y(s) l Apply partial fraction expansion l Apply inverse Laplace transform to each term 例8例8

Introduction to Automatic Control The Laplace Transform OVERVIEW This module is a mathematical section to establish a base for the theory of control systems. This is a tool and it is indispensable as most of linear system dynamics are described in a mapped space that can only be understood when the main theorems of the Laplace transform are known. Special focus is put on the solution of differential equations using the Laplace transform.

Introduction to Automatic Control The Laplace Transform Homework 见 WORD 文件:拉氏变换作业