FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3

Slides:



Advertisements
Similar presentations
Rotationally-resolved infrared spectroscopy of the polycyclic aromatic hydrocarbon pyrene (C 16 H 10 ) using a quantum cascade laser- based cavity ringdown.
Advertisements

Intracavity Laser Absorption Spectroscopy of PtS in the Near Infrared James J. O'Brien University of Missouri – St. Louis and Leah C. O'Brien and Kimberly.
Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
Observation of the Infrared Spectrum of SiC 5 T. H. Le and W. R. M. Graham Molecular Physics Lab Texas Christian University 66 th International Symposium.
Infrared spectra of OCS-C 6 H 6, OCS-C 6 H 6 -He and OCS-C 6 H 6 -Ne van der Waals Complexes M. Dehghany, J. Norooz Oliaee, Mahin Afshari, N. Moazzen-Ahmadi.
HIGH-RESOLUTION ANALYSIS OF VARIOUS PROPANE BANDS: MODELING OF TITAN'S INFRARED SPECTRUM J.-M. Flaud.
A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.
Laboratory spectroscopy of H3+
HIGH RESOLUTION INFRARED SPECTROSCOPY OF N 2 O-C 4 H 2 AND CS 2 −C 2 D 2 DIMERS MAHDI YOUSEFI S. SHEYBANI-DELOUI JALAL NOROOZ OLIAEE BOB MCKELLAR NASSER.
Spectroscopy of Hybrid Inorganic/Organic Interfaces Vibrational Spectroscopy Dietrich RT Zahn.
Terrance J. Codd*, John Stanton†, and Terry A. Miller* * The Laser Spectroscopy Facility, Department of Chemistry and Biochemistry The Ohio State University,
Rovibronic Analysis of the State of the NO 3 Radical Henry Tran, Terrance J. Codd, Dmitry Melnik, Mourad Roudjane, and Terry A. Miller Laser Spectroscopy.
MODERATE RESOLUTION JET COOLED CAVITY RINGDOWN SPECTROSCOPY OF THE A STATE OF NO 3 RADICAL Terrance J. Codd, Ming-Wei Chen, Mourad Roudjane and Terry A.
DENNIS J. CLOUTHIER, ROBERT GRIMMINGER, and BING JIN, Department of Chemistry, University.
Infrared Diode Laser Spectroscopy of the ν 3 Fundamental Band of the PO 2 Free Radical.
Supersonic Free-jet Quantum Cascade Laser Measurements of 4 for CF 3 35 Cl and CF 3 37 Cl and FTS Measurements from 450 to 1260 cm -1 June 20, 2008 James.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
Columbus, June , 2005 Stark Effect in X 2 Y 4 Molecules: Application to Ethylene M. ROTGER, W. RABALLAND, V. BOUDON, and M. LOËTE Laboratoire de.
Zhong Wang, Trevor Sears Department of Chemistry, Brookhaven National Laboratory; Department of Chemistry, Stony Brook University Ju Xin Department of.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
FTIR EMISSION SPECTROSCOPY AND AB INITIO STUDY OF THE TRANSIENT BO AND HBO MOLECULES 65 th Ohio State University International Symposium on Molecular Spectroscopy.
THE ELECTRONIC SPECTRUM OF JET-COOLED H 2 PO, THE PROTOTYPICAL PHOSPHORYL FREE RADICAL Mohammed A. Gharaibeh and Dennis J. Clouthier Department of Chemistry,
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
1 Infrared Spectroscopy of Ammonium Ion MG03: Sub-Doppler Spectroscopy of ND 3 H + Ions in the NH Stretch Mode MG04: Infrared Spectroscopy of Jet-cooled.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
OSU – June STEPHEN KUKOLICH, Chemistry Dept., University of Arizona, MICHAEL PALMER School of Chemistry, University of Edinburgh, PETER GRONER,
GLOBAL FIT ANALYSIS OF THE FOUR LOWEST VIBRATIONAL STATES OF ETHANE: THE 12  9 BAND L. Borvayeh and N. Moazzen-Ahmadi Department of Physics and Astronomy.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Molecular Spectroscopy Symposium June 2013 Modeling the Spectrum of the 2 2 and 4 States of Ammonia to Experimental Accuracy John C. Pearson.
Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.
Breaking the Symmetry in Methyl Radical: High resolution IR spectroscopy of CH 2 D Melanie Roberts Department of Chemistry and Biochemistry, JILA University.
HIGH RESOLUTION JET COOLED CAVITY RINGDOWN SPECTROSCOPY OF THE A STATE BAND OF THE NO 3 RADICAL Terrance J. Codd, Mourad Roudjane and Terry A. Miller.
E. Gonzalez, C.M.L. Rittby, and W.R.M. Graham
ENERGY LEVELS OF THE NITRATE RADICAL BELOW 2000 CM -1 Christopher S. Simmons, Takatoshi Ichino and John F. Stanton Molecular Spectroscopy Symposium, June.
First Observation of a Vibrational Fundamental of SiC 6 Si Trapped in Solid Ar T.H. Lê, C.M.L. Rittby and W.R.M. Graham Department of Physics and Astronomy.
The Infrared Spectrum of CH 5 + Revisited Kyle N. Crabtree, James N. Hodges, and Benjamin J. McCall.
70th ISMS Vibration-Rotation Analysis of the 13 CO 2 Asymmetric Stretch Fundamental Band in Ambient Air for the Physical Chemistry Teaching Laboratory.
Infrared Observation of the ν 1 (  ) and ν 2 (  ) Stretching Modes of Linear GeC 3 E. Gonzalez, C.M.L. Rittby, and W.R.M. Graham Department of Physics.
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
The Cyclic CO 2 Trimer: Observation of two parallel bands and determination of intermolecular out-of-plane torsional frequencies Steacie Institute for.
70th International Symposium on the Molecular Spectroscopy June 22-26, 2015 The Laser Spectroscopy Facility Department of Chemistry and Biochemistry Mourad.
Infrared Spectroscopy (IR) Fourier Transform Infrared (FTIR)
* Funded by NSF. Xiujuan Zhuang and Timothy C. Steimle* Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ Neil Reilly,
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
Sub-Doppler Jet-Cooled Infrared Spectroscopy of ND 2 H 2 + and ND 3 H + in NH Stretch Fundamental Modes Astronomical Molecular Spectroscopy in the Age.
Observation of the forbidden transitions between the A 1  u and b 3  g - states of C 2 Graduate School of Natural Science and Technology Okayama Univ.
High-resolution Fourier transform emission spectroscopy of the A 2  + – X 2  transition of the BrCN + ion. June 20, 2005, Ohio state Univ. Yoshihiro.
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
Laser spectroscopic study of CaH in the B 2 Σ + and D 2 Σ + state Kyohei Watanabe, Kanako Uchida, Kaori Kobayashi, Fusakazu Matsushima, Yoshiki Moriwaki.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
Analysis of the FASSST rotational spectrum of S(CN) 2 Zbigniew Kisiel, Orest Dorosh Institute of Physics, Polish Academy of Sciences Ivan R. Medvedev,
FTIR and DFT Study of the Vibrational Spectrum of SiC 5 Trapped in Solid Ar T.H. Le, C.M.L. Rittby and W.R.M. Graham Department of Physics and Astronomy.
LASER INDUCED FLUORESCENCE SPECTROSCOPY OF THE SiNSi RADICAL II: IDENTIFICATIONS OF THE A2A1, B2B1, AND D2Sg+ STATES C. MOTOYOSHI, Y. SUMIYOSHI, Y. ENDO.
Lineshape analysis of CH3F-(ortho-H2)n absorption spectra in 3000 cm-1 region in solid para-H2 Yuki Miyamoto Graduate School of Natural Science and Technology,
K.-X. AuYong, J.M. King, A.R.W. McKellar, & J.K.G. Watson
Time-resolved infrared diode laser spectroscopy of the n1 band of CoNO
The Rovibronic Spectra of The Cyclopentadienyl Radical (C5H5)
60th International Symposium on Molecular Spectroscopy
The Near-IR Spectrum of CH3D
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
Bob Grimminger and Dennis Clouthier
Analysis of the Rotationally Resolved Spectra to the Degenerate (
(Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara
Fourier Transform Infrared Spectral
Presentation transcript:

FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3 (Okayama Univ., Hiroshima City Univ.) R. Fujimori, N. Shimizu, J. Tang, K. Kawaguchi, T. Ishiwata

Infrared study of NO3 K+1 Four fundamental bands n3+n4. n1 ; inactive n2 ; Friedl and Sander(1987) n3 ; very weak intensity n4 ; Only Matrix isolation observation  (Beckers, Willner, Jacox. 2009) 1127 1492 K+2 n4. K+3 K Gr. DK=3 CD Present study ; first gas-phase spectroscopy of n4 Determination of C0 from DK=3 Combination Difference ( selection rule DK = ±1 for n4, combined with other measurements) Calculation of inertial defect

Experimental setup 0.006 cm-1 resolution Effective path length :48-m Liq. He Si bolometer

Detector part – Silicon Bolometer Dewar temperature 4.2 K to 1.7 K

Monitoring of NO3 concentration by HeNe laser Absorption spectrum of the NO3 B-X band Sander, J. Phys. Chem. (1986) discharge Off 10 % absorption Absorption of HeNe Laser (3-m path length) discharge On

Observed spectrum of 14NO3 radical

Analysis 1. n4 band 114 lines PP(N,K) K=5 ~ 29 2. DK=3 ground state combination differences n4 (365), n3+n4-n4 (1127), n3+n4 (1492) 3. n4 combination differences n3+n4-n4 (1127), n3+n4 (1492) 4. DK=0 ground state combination differences n3+n4 (1492) rQ(N+1,K) and rR(N,K) pQ(N-1,K) and pP(N,K)

Combination differences for DK=3 and n4 n3 + n4 13 14 n3 hot band of 15NO3 was newly observed 1127 cm-1 1492 cm-1 n4 13 14 n4 combination differences 365 cm-1 band Gr DK = 3 combination differences K = 12 15

Statistical weight in Analysis 1. n4 band 114 lines PP(N,K) K=5 ~ 29 Weight = 1 (accuracy 0.001 cm-1) 2. DK=3 ground state combination differences n4 (365), n3+n4-n4 (1127), n3+n4 (1492) Weight = 1/3 3. n4 combination differences n3+n4-n4 (1127), n3+n4 (1492) Weight = 1/2 4. DK=0 ground state combination differences n3+n4 (1492) Including diode laser data

14NO3 and 15NO3 molecular constants(1) (Ground state) 14NO3         15NO3 present previous  present B 0.4585445(86) 0.4585485(63)  0.458613(14) C   0.2286679(57) [0.2292743] 0.2287127(89) DN ☓105 0.1092(13) 0.1113(12) 0.1090(25) DNK☓105 -0.2073(26) -0.2121(27) -0.2017(65) DK ☓105 0.1072(18) [0.1034]   0.0995(52) ebb -0.01621(20) -0.01649(13) -0.01549(26) ecc 0.00079(14) [0.0] [0.00079] DKx105(calc) 0.101 0.0977 sfit=0.0013 cm-1

14NO3 and 15NO3 molecular constants(2) (n4 state) 14NO3          15NO3       present previous present n0 365.48776(35) 365.48419(43) 360.20294(59) B  0.4592093(41) 0.4592222(60) 0.4592148(90) C 0.2282897(28) 0.2278233(40) 0.2283252(36) DN ☓105 0.0924(16) 0.1019(23) 0.0953(44) DNK☓105 -0.1643(41) -0.1953(58) -0.169(13) DK ☓105 0.0801(28) 0.0973(40) 0.0815(97) Cz -0.042984(14) -0.042063(15) 0.035723(23) hN☓105 -0.470(21) -0.431(28) -0.48(13) hK☓105 0.379(27) 0.382(36) 0.40(13) q4 0.013276(15) 0.013363(22) 0.013360(66) aeff -0.16581(44) -0.17016(36) -0.16606(50) ebb -0.015376(36) -0.015766(36)-0.014498(53) ecc 0.000761(26) [0.0] 0.000664(33)

Inertial defect of planar symmetric top molecule harmonic frequencies and z3 Jagod and Oka (1990, JMS) Check of vibrational assignment

Inertial defect in BF3 (example, data Maki et al. JMS ) Dobs=Ic-2 Ib amu Å2 v1 v2 v3 v4 obs calc obs-calc 0 0 0 0 0.1967 0.1961 0.0005 0.3% 1 0 0 0 0.1968 0.1961 0.0007 0.4% 0 1 0 0 0.0665 0.0763 -0.0097 13 % 0 0 1 0 0.2436 0.2573 -0.0137 5 % 0 0 0 1 0.3936 0.3910 0.0026 2 0 0 1 0.4222 0.3910 0.0311 0 2 0 0 -0.0639 -0.0436 -0.0204 30%(max) 0 0 2 0 0.2900 0.3184 -0.0284 0 0 0 2 0.5894 0.5859 0.0035 0 0 0 2 0.5916 0.5859 0.0056 1 1 0 0 0.0798 0.0763 0.0035 1 0 1 0 0.2228 0.2573 -0.0345 1 0 0 1 0.4079 0.3910 0.0169 0 1 0 1 0.2619 0.2712 -0.0093 0 0 1 1 0.4278 0.4522 -0.0244

Inertial Defects D (amu Å2) of NO3 D=Ic - 2Ib     Obs. Calc. O-C Gr. 0.206 0.223 -0.017 (0001) 0.434 0.437 -0.003 (1001) 0.474 0.437 0.037 (00031 1.091 0.864 0.227 (0011) 0.367 0.487 0.120 x3 + x4 = 0 (D3h ) n1 (1050), n2 (762) n3 (1127), n4 (365) 8 % 0.7 % 21 % 24 % n4 n1+n4 3n4 n3+n4 1492 band x3 + x4 ≠ 0  not in D3h (Jahn-Tellar effect ) large p34 [splitting in K=1], eaa-ebb≠0 In this calc, if n3 = 1492, D3 calc = 0.237 Disagreement with observed D (35%)

Relative infrared intensity n3+n4(1492 band) = 1.00 band   Obs. Calc.(Stanton) ν4 (365 cm-1) 0.59 0.26 3ν4 (1173) 0.03 0.06 ν1+ν4 (1413) 0.12 0.31 ν3+ν4 (1492) 1.00 1.00 ν3+2ν4(1927) 0.65  0.13   J. F. Stanton, Molecular Physics, 107.1059 (2009) Agreement within factor 2 except for ν3+2ν4

Summary 1. Measurement of the n4 band of NO3 Present 365.7871 cm-1 Matrix 365.6 cm-1 Isotope shift (14N - 15N) = 5.5851 cm-1 2. Determination of C0 0.2286321 (67) cm-1 14NO3 0.228674 (11) cm-1 15NO3 3. Calculations of Inertial defect

Inertial defect in SO3 (example, data Maki et al. JMS ) v1 v2 v3 v4 obs calc obs-calc 0 0 0 0 0.1576 0.1585 -0.0008 0 1 0 0 0.3089 -1.0765 1.3855 0 0 1 0 0.1776 0.1732 0.0044 0 0 0 1 0.2245 0.9196 -0.6951 0 0 0 1 0.3782 0.9196 -0.5414 0 2 0 0 -0.0975 -2.3115 2.2141 0 0 2 0 0.1981 0.1880 0.0102 0 0 0 2 0.5424 1.6808 -1.1384 0 0 0 2 0.5445 1.6808 -1.1363 1 1 0 0 0.3317 -1.0765 1.4082 0 0 1 0 0.1827 0.1732 0.0095 1 0 0 1 0.2041 0.9196 -0.7156 0 1 0 1 0.2216 -0.3153 0.5370 0 0 1 1 0.2544 0.9344 -0.6800 0 0 0 3 0.3679 2.4420 -2.0741 0 1 0 2 0.4369 0.4458 -0.0090 0 2 0 1 0.5243 -1.5503 2.0746 0 1 1 0 0.2999 -1.0618 1.3616 Dobs=Ic-2 Ib amu Å2