Remote sensing from POLDER/PARASOL Earth polar- orbiting satellite: enhanced Surface/Aerosol properties retrieval P. Litvinov, O. Dubovik, T. Lapyonok,

Slides:



Advertisements
Similar presentations
DEPARTMENT OF LAND INFORMATION – SATELLITE REMOTE SENSING SERVICES CRCSI AC Workshop November 2005 Remote Sensing in Near-Real Time of Atmospheric.
Advertisements

Validation of the 6S radiative transfer code for atmospheric correction of MODIS data MODIS ST Meeting, Land Discipline BreakoutMarch 24 th, 2005 Svetlana.
A Tutorial on MODIS and VIIRS Aerosol Products from Direct Broadcast Data on IDEA Hai Zhang 1, Shobha Kondragunta 2, Hongqing Liu 1 1.IMSG at NOAA 2.NOAA.
Collection 6 Aerosol Products Becoming Available
The retrieval of snow properties from space: theory and applications A. A. Kokhanovsky 1, M. Tedesco 2,3, G. Heygster 1, M. Schreier 1, E. P. Zege 4 1)University.
Characterisation of Aerosols over Indo- Gangetic Basin during Winter Season By Hiren Jethva Ph.D. Student Centre for Atmospheric & Oceanic Sciences Indian.
OMI follow-on Project Toekomstige missies gericht op troposfeer en klimaat Pieternel Levelt, KNMI.
Validation of SCIAMACHY polarisation using POLDER as a reference (bonus: reflectance validation) Tiger Team Meeting 23, SRON, 23 May 2006.
OMI ST meeting June 2008 Calibration & 0-1b data processing Marcel Dobber (KNMI)
Session 7: Land Applications Burned Area RENATA LIBONATI Instituto Nacional de Pesquisas Espaciais (INPE) Brazil EUMETRAIN.
Global transport and radiative forcing of biomass burning aerosols Yang Chen, Qinbin Li, Ralph Kahn Jet Propulsion Laboratory California Institute of Technology,
1/26 Multisensors clouds remote sensing from POLDER/MODIS AMS Madison, J. Riedi, 14 July 2006 Cloud Properties Retrieval from synergy between POLDER3/Parasol.
Gerrit de Leeuw 1,2,3, Larisa Sogacheva1, Pekka Kolmonen 1, Anu-Maija Sundström 2, Edith Rodriguez 1 1 FMI, Climate Change Unit, Helsinki, Finland 2 Univ.
Page 1 1 of 16, NATO ASI, Kyiv, 9/15/2010 Vijay Natraj (Jet Propulsion Laboratory) Collaborators Hartmut Bösch (Univ Leicester) Rob Spurr (RT Solutions)
Detect and Simulate Vegetation, Surface Temperature, Rainfall and Aerosol Changes: From Global to Local Examples from EOS MODIS remote sensing Examples.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
Development of the SEVIRI Aerosol Retrieval Algorithm (SARA) Aerosol retrievals using MSG-SEVIRI images Y.S. Bennouna and G. de Leeuw.
Satellite Remote Sensing of Surface Air Quality
An Introduction to Using Angular Information in Aerosol Remote Sensing Richard Kleidman SSAI/NASA Goddard Lorraine Remer UMBC / JCET Robert C. Levy NASA.
Visible Satellite Imagery Spring 2015 ARSET - AQ Applied Remote Sensing Education and Training – Air Quality A project of NASA Applied Sciences Week –
MT Workshop October 2005 JUNE 2004 DECEMBER 2004 End of OCTOBER 2005 ? MAY 2002 ? Capabilities of multi-angle polarization cloud measurements from.
An Introduction to Using Spectral Information in Aerosol Remote Sensing Richard Kleidman SSAI/NASA Goddard Lorraine Remer UMBC / JCET Robert C. Levy NASA.
DOCUMENT OVERVIEW Title: Fully Polarimetric Airborne SAR and ERS SAR Observations of Snow: Implications For Selection of ENVISAT ASAR Modes Journal: International.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
AMFIC: Aerosol retrieval Gerrit de Leeuw, FMI/UHEL/TNO Pekka Kolmonen, FMI Anu-Maija Sundström, UHEL Larisa Sogacheva, UHEL Juha-Pekka Luntama, FMI Sini.
1 Applications of Remote Sensing: SeaWiFS and MODIS Ocean Color Outline  Physical principles behind the remote sensing of ocean color parameters  Satellite.
Introduction Invisible clouds in this study mean super-thin clouds which cannot be detected by MODIS but are classified as clouds by CALIPSO. These sub-visual.
Aerosol retrievals from AERONET sun/sky radiometers: Overview of - inversion principles - aerosol retrieval products - advances and perspectives Aerosol.
In Situ and Remote Sensing Characterization of Spectral Absorption by Black Carbon and other Aerosols J. Vanderlei Martins, Paulo Artaxo, Yoram Kaufman,
Michael Taylor, COMECAP 29 th May, 2014: Remote Sensing Session Multimodal fitting of atypical size distributions from AERONET Michael Taylor Stelios Kazadzis.
GE0-CAPE Workshop University of North Carolina-Chapel Hill August 2008 Aerosols: What is measurable and by what remote sensing technique? Omar Torres.
Monitoring aerosols in China with AATSR Anu-Maija Sundström 2 Gerrit de Leeuw 1 Pekka Kolmonen 1, and Larisa Sogacheva 1 AMFIC , Barcelona 1:
POLAR MULTI-SENSOR AEROSOL PROPERTIES OVER LAND Michael Grzegorski, Rosemary Munro, Gabriele Poli, Andriy Holdak and Ruediger Lang.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote SEnsing Training A project of NASA Applied Sciences Pawan Gupta Satellite.
Characterization of Aerosols using Airborne Lidar, MODIS, and GOCART Data during the TRACE-P (2001) Mission Rich Ferrare 1, Ed Browell 1, Syed Ismail 1,
Accounting for non-sphericity of aerosol particles in photopolarimetric remote sensing of desert dust Oleg Dubovik (UMBC / GSFC, Code 923) Alexander.
As components of the GOES-R ABI Air Quality products, a multi-channel algorithm similar to MODIS/VIIRS for NOAA’s next generation geostationary satellite.
1/30 MODIS/Aqua and PARASOL Observation of Clouds and Aerosols PropertiesMODIS Sci. Team Meeting Oct Aqua/MODIS and Parasol/POLDER3 Observations.
1 N. Christina Hsu, Deputy NPP Project Scientist Recent Update on MODIS C6 Deep Blue Aerosol Products and Beyond N. Christina Hsu, Corey Bettenhausen,
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Introduction 1. Advantages and difficulties related to the use of optical data 2. Aerosol retrieval and comparison methodology 3. Results of the comparison.
AERONET Inversions: Progress and Perspectives Oleg Dubovik (NASA / GSFC) Alexander Sinyuk (NASA / GSFC) Tatyana Lapyonok (NASA / GSFC) Brent Holben (NASA.
Co-Retrieval of Surface Color and Aerosols from SeaWiFS Satellite Data Outline of a Seminar Presentation at EPA May 2003 Sean Raffuse and Rudolf Husar.
April 29, 2000, Day 120 July 18, 2000, Day 200October 16, 2000, Day 290 Results – Seasonal surface reflectance, Eastern US.
Algorithm Status: 1.Core Algorithm is developed and performs well: - uses very elaborated aerosol and RT models; - based on rigorous statistical optimization;
Retrieval of biomass burning aerosols with combination of near-UV radiance and near -IR polarimetry I.Sano, S.Mukai, M. Nakata (Kinki University, Japan),
Co-Retrieval of Surface Color and Aerosols from SeaWiFS Satellite Data Outline of a Seminar Presentation at EPA May 2003 Sean Raffuse and Rudolf Husar.
Jetstream 31 (J31) in INTEX-B/MILAGRO. Campaign Context: In March 2006, INTEX-B/MILAGRO studied pollution from Mexico City and regional biomass burning,
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
TNO Physics and Electronics Laboratory    J. Kusmierczyk-Michulec G. de Leeuw.
Interannual Variability and Decadal Change of Solar Reflectance Spectra Zhonghai Jin Costy Loukachine Bruce Wielicki (NASA Langley research Center / SSAI,
AERONET: New Aerosol products, data access, and reanalysis of data for mixtures of fine and coarse mode aerosols Brent Holben 1 Tom Eck 1, Oleg Dubovik.
The Use of Spectral and Angular Information In Remote Sensing
Lorraine Remer, Yoram Kaufman, Didier Tanré Shana Mattoo, Richard Kleidman, Robert Levy Vanderlei Martins, Allen Chu, Charles Ichoku, Rong-Rong Li, Ilan.
1 Y. Kaufman, L. Remer, M. Chin, NASA; Didier Tanré, CNRS, Univ. of Lille Aerosol measurements & models MODIS & AERONET vs. GOCART.
Fourth TEMPO Science Team Meeting
Extinction measurements
Modeling team: Mian Chin, Huisheng Bian, Tom Kucsera NASA GSFC
N. Bousserez, R. V. Martin, L. N. Lamsal, J. Mao, R. Cohen, and B. R
Near UV aerosol products
Need for TEMPO-ABI Synergy
Remote Sensing of Aerosols
Remote Sensing of Aerosols
Datasets, applications, plans
Satellite Sensors – Historical Perspectives
FIRE IMPACT ON SURFACE ALBEDO
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

Remote sensing from POLDER/PARASOL Earth polar- orbiting satellite: enhanced Surface/Aerosol properties retrieval P. Litvinov, O. Dubovik, T. Lapyonok, F. Ducos, D. Tanre Laboratoire d'Optique Atmosphérique, CNRS, Universite Lille-1, FRANCE

Helsinki, August 19-21, 2013 Advanced retrieval algorithm Multi-spectral, multi-angle I, Q, U measurements Aerosol model Surface reflection model Enhanced retrieval of Aerosol/Surface properties AOD, Re(m), Im(m), Size distribution, fraction of spherical particles, surface parameters etc. Enhanced space-borne Aerosol/Surface retrieval

Reflection matrix for coupled atmosphere-surface system Helsinki, August 19-21, 2013 Aerosol and surface properties should be retrieved simultaneously!

independent POLDER/PARASOLindependent POLDER/PARASOL measurements : VIEWS: N 16: ( ) INTENSITY (I): N t 6 (for aerosol): (0.44, 0.49, 0.56, 0.67, 0.865, 1.02 m) N t (for gas absorption): (0.763, 0.765, m) POLARIZATION (Q, U): N P 3: (0.49, 0.67, m) SINGLE OBSERVATION: N t N P ×N = (6+3)×16= 144 a lot !!! – as much as AERONET Helsinki, August 19-21, 2013

PARASOL daily coverage image, March 3, 2013 Helsinki, August 19-21, 2013 Swath: about 1600 km cross-track Global coverage: every 2 days 1 pixel spatial resolution: 5.3km × 6.2km

() New POLDER/PARASOL algorithm (GRASP) (Dubovik et al, AMT, 2011) The new algorithm uses complete set of PARASOL angular measurements in all spectral bands including both radiance and linear polarization measurements. Continuous space of aerosol and surface properties is used. The algorithm is based on statistically optimized fitting. The core of the new PARASOL algorithm is based on the same concept as AERONET aerosol retrieval (O. Dubovik and M. King, 2000; O. Dubovik, 2004; O. Dubovik et al, 2006). Helsinki, August 19-21, 2013

The concept of the GRASP algorithm Two scenarios of retrieval (Dubovik et al., AMT, 2011): -Conventional: single-pixel retrieval (each single pixel is inverted independently) -New concept: multiple-pixel retrieval (group of pixels are inverted simultaneously) Bern, July 15-19, 2013

Aerosol model Helsinki, August 19-21, 2013 retrieved C + (1-C) Aerosol model is the same as in AERONET retrieval (Mixing of particle shapes (Dubovik et al., 2006))

Surface reflection model Helsinki, August 19-21, 2013 Semi-empirical models for surface total reflectance description: -RPV model (Rahman et al., (1993)) -Ross-Li (Ross, (1981); Li, X., Strahler (1992)) -Ross-Roujean model (Roujean et al., (1992)) Semi-empirical models for surface polarized reflectance description: -Nadal-Breon model (Nadal and Bréon, (1999)) -Maignan model (Maignan et al., (2009)) -Fresnel facet model for Gaussian surfaces (Litvinov et al., 2011) Physically based models for reflection matrix for surfaces: -Cox-Munk model (for aerosol retrieval over ocean) -Physical models for land surface reflection matrix (Litvinov et al., 2012)

Bern, July 15-19, Perfect retrieval of synthetic measurements!!!

Comparison with AERONET Bern, July 15-19, Banizoumbou Mongu Kanpur Banizoumbou: January, February, 2008 Surface: Grassland. Aerosol: Coarse mode is dominated. Mongu: August, September, 2008 Surface: Savanna. Aerosol: Fine mode is dominated. Beijing: April, December, 2008 Surface: Urban. Aerosol: Fine and Coarse modes. Kanpur: October-December, 2008 Surface: Urban. Aerosol: Fine and Coarse modes. The IGBP (International Geosphere Biosphere Programme) land type specification was used Beiging

Bern, July 15-19, 2013 POLDER/AERONET. AOD. St.Dev.=0.160 St.Dev.=0.128

POLDER/AERONET. Angstrom Exponent. Bern, July 15-19, 2013 St.Dev.=0.262

POLDER/AERONET. SSA. Bern, July 15-19, 2013 St.Dev.=0.045 St.Dev.=0.051

Bern, July 15-19, DHR retrieval, Banizoumbou, 2007, Black curves and markers: DHR in Color curves and markers: DHR in 2008 There are possibilities for surface climatology and surface changes monitoring!!!

Surface modeling effect on aerosol retrieval. AOD retrieval over Banizoumbou, Mongu. Bern, July 15-19,

Surface modeling effect on aerosol retrieval. SSA retrieval over Banizoumbou, Mongu Bern, July 15-19, Physical models are required to increase accuracy of aerosol retrieval.

I,Q,U retrieval vs I-retrieval: total reflectance fits Helsinki, August 19-21, 2013

I,Q,U retrieval vs I-retrieval: polarized reflectance fits Helsinki, August 19-21, 2013

I,Q,U retrieval vs I-retrieval retrieval: AOD (Banizoumbou) Helsinki, August 19-21, 2013 I,Q,U I-retrieval

I,Q,U retrieval vs I-retrieval retrieval: SSA (Banizoumbou) Helsinki, August 19-21, 2013 I,Q,U I-retrieval

Multi-pixel vs Single pixel retrieval: AOD (Banizoumbou) Helsinki, August 19-21, 2013 Multi-pixel Single pixel

Multi-pixel vs Single pixel retrieval: SSA (Banizoumbou) Helsinki, August 19-21, 2013 Multi-pixel Single pixel

Regional maps (1800 x 1800 km). Banizoumbou, AOD 670 nm Helsinki, August 19-21, 2013 Strong spatial and temporal variation of AOD

Regional maps (1800 x 1800 km). Banizoumbou, SSA 670 nm Helsinki, August 19-21, 2013 Essential temporal variation of SSA

Daily variation of AOD and SSA at 670 nm. Banizoumbou (Jan., Febr. 2008). Helsinki, August 19-21,

Regional maps (1800 x 1800 km). Banizoumbou, SALB 670 nm Bern, July 15-19, 2013 Surface is very stable for Jan. and Febr.!

Regional maps (1800 x 1800 km). Mongu, SSA 670 nm Helsinki, August 19-21, 2013 Small SSA correspond to biomass burning NASA Global Fire Maps – (detected by MODIS)

Helsinki, August 19-21, 2013 Advanced retrieval Algorithm - LOA (Lille, France) GRASP algorithm (O.Dubovik et al, AMT, 2011). - SRON (Utrecht, The Netherlands) algorithm (O.Hasekamp et al, JGR, 2012) Multi-spectral, multi-angle I, Q, U measurements PARASOL will end up in September There may be 7 years gap in polarimetric space-borne measurements!!! Aerosol model At present time the mixture of spherical and spheroidal particles is the most comprehensive existent aerosol model (Dubovik et al., 2006). Surface reflection model - Physical models are required to increase accuracy of aerosol retrieval over land. - Physical models provide possibilities for surface characterization ( Litvinov et al., 2012). Enhanced retrieval of Aerosol/Surface properties Resume (space-borne Aerosol/Surface retrieval)

Helsinki, August 19-21, 2013 Multi-spectral, multi-angle I, Q, U space- borne measurements: - PARASOL will end up in September 2013! - 3MI will be launched in 2020 (?). - Ukrainian version of GISS NASA APS (Aerosol Polarimetry Sensor) instrument may be launched in 3 years (the possibility to set up Dutch SPEX instrument on the same satellite is being discussed now). There may be 7 years gap in polarimetric space-borne measurements!!! Advanced retrieval algorithm: - LOA (Lille, France) GRASP algorithm (O.Dubovik et al, AMT, 2011) - SRON (Utrecht, The Netherlands) algorithm (O.Hasekamp et al, JGR, 2012)

Helsinki, August 19-21, 2013 Aerosol model: At present time the mixture of spherical and spheroidal particles is the most comprehensive existent aerosol model (Dubovik et al., 2006). Surface reflection model - Physical models are required to increase accuracy of aerosol retrieval over land (Litvinov et al., 2011; Litvinov et al., 2012). - Physical models provide possibilities for surface characterization (Litvinov et al., 2012).