A Distributed Energy Saving Approach for Ethernet Switches in Data Centers Weisheng Si 1, Javid Taheri 2, Albert Zomaya 2 1 School of Computing, Engineering,

Slides:



Advertisements
Similar presentations
Quality-of-Service Routing in IP Networks Donna Ghosh, Venkatesh Sarangan, and Raj Acharya IEEE TRANSACTIONS ON MULTIMEDIA JUNE 2001.
Advertisements

VSMC MIMO: A Spectral Efficient Scheme for Cooperative Relay in Cognitive Radio Networks 1.
1 IK1500 Communication Systems IK1330 Lecture 3: Networking Anders Västberg
Maximum Battery Life Routing to Support Ubiquitous Mobile Computing in Wireless Ad Hoc Networks By C. K. Toh.
Jaringan Komputer Lanjut Packet Switching Network.
1 CONGESTION CONTROL. 2 Congestion Control When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results. Because.
Improving TCP Performance over Mobile Ad Hoc Networks by Exploiting Cross- Layer Information Awareness Xin Yu Department Of Computer Science New York University,
Congestion Control Created by M Bateman, A Ruddle & C Allison As part of the TCP View project.
Gossip Scheduling for Periodic Streams in Ad-hoc WSNs Ercan Ucan, Nathanael Thompson, Indranil Gupta Department of Computer Science University of Illinois.
“ElasticTree: Saving energy in data center networks“ by Brandon Heller, Seetharaman, Mahadevan, Yiakoumis, Sharma, Banerjee, McKeown presented by Nicoara.
What's inside a router? We have yet to consider the switching function of a router - the actual transfer of datagrams from a router's incoming links to.
Beneficial Caching in Mobile Ad Hoc Networks Bin Tang, Samir Das, Himanshu Gupta Computer Science Department Stony Brook University.
NCKU CSIE CIAL1 Principles and Protocols for Power Control in Wireless Ad Hoc Networks Authors: Vikas Kawadia and P. R. Kumar Publisher: IEEE JOURNAL ON.
On the Construction of Energy- Efficient Broadcast Tree with Hitch-hiking in Wireless Networks Source: 2004 International Performance Computing and Communications.
Efficient Monitoring of QoS Parameters (EMQP) Authors: Vadim Drabkin Arie Orlovsky Constantine Elster Instructors: Dr. Danny Raz Mr. Ran Wolff.
Chapter 10 Introduction to Wide Area Networks Data Communications and Computer Networks: A Business User’s Approach.
Online Data Gathering for Maximizing Network Lifetime in Sensor Networks IEEE transactions on Mobile Computing Weifa Liang, YuZhen Liu.
Random Early Detection Gateways for Congestion Avoidance
Adaptive Self-Configuring Sensor Network Topologies ns-2 simulation & performance analysis Zhenghua Fu Ben Greenstein Petros Zerfos.
Advanced Computer Networks : RED 1 Random Early Detection Gateways for Congestion Avoidance Sally Floyd and Van Jacobson, IEEE Transactions on Networking,
Jennifer Rexford Princeton University MW 11:00am-12:20pm Wide-Area Traffic Management COS 597E: Software Defined Networking.
1 Algorithms for Bandwidth Efficient Multicast Routing in Multi-channel Multi-radio Wireless Mesh Networks Hoang Lan Nguyen and Uyen Trang Nguyen Presenter:
1 Scheduling calls with known holding times Reinette Grobler * Prof. M. Veeraraghavan University of Pretoria Polytechnic University
Connecting LANs, Backbone Networks, and Virtual LANs
Pipelined Two Step Iterative Matching Algorithms for CIOQ Crossbar Switches Deng Pan and Yuanyuan Yang State University of New York, Stony Brook.
Buffer Management for Shared- Memory ATM Switches Written By: Mutlu Apraci John A.Copelan Georgia Institute of Technology Presented By: Yan Huang.
1 Topology Control of Multihop Wireless Networks Using Transmit Power Adjustment Infocom /12/20.
Distributed Quality-of-Service Routing of Best Constrained Shortest Paths. Abdelhamid MELLOUK, Said HOCEINI, Farid BAGUENINE, Mustapha CHEURFA Computers.
Tree-Based Double-Covered Broadcast for Wireless Ad Hoc Networks Weisheng Si, Roksana Boreli Anirban Mahanti, Albert Zomaya.
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2007 (TPDS 2007)
A Distributed Scheduling Algorithm for Real-time (D-SAR) Industrial Wireless Sensor and Actuator Networks By Kiana Karimpour.
A Unified Modeling Framework for Distributed Resource Allocation of General Fork and Join Processing Networks in ACM SIGMETRICS
Stochastic sleep scheduling (SSS) for large scale wireless sensor networks Yaxiong Zhao Jie Wu Computer and Information Sciences Temple University.
“Intra-Network Routing Scheme using Mobile Agents” by Ajay L. Thakur.
CS3502: Data and Computer Networks Local Area Networks - 4 Bridges / LAN internetworks.
Routing Protocol Evaluation David Holmer
SoftCOM 2005: 13 th International Conference on Software, Telecommunications and Computer Networks September 15-17, 2005, Marina Frapa - Split, Croatia.
Topology aggregation and Multi-constraint QoS routing Presented by Almas Ansari.
CONGESTION CONTROL and RESOURCE ALLOCATION. Definition Resource Allocation : Process by which network elements try to meet the competing demands that.
Wireless Sensor Networks COE 499 Energy Aware Routing
Computer Networks Performance Metrics. Performance Metrics Outline Generic Performance Metrics Network performance Measures Components of Hop and End-to-End.
Sami Al-wakeel 1 Data Transmission and Computer Networks The Switching Networks.
MARCH : A Medium Access Control Protocol For Multihop Wireless Ad Hoc Networks 성 백 동
ACN: RED paper1 Random Early Detection Gateways for Congestion Avoidance Sally Floyd and Van Jacobson, IEEE Transactions on Networking, Vol.1, No. 4, (Aug.
Minimax Open Shortest Path First (OSPF) Routing Algorithms in Networks Supporting the SMDS Service Frank Yeong-Sung Lin ( 林永松 ) Information Management.
Optimization of Wavelength Assignment for QoS Multicast in WDM Networks Xiao-Hua Jia, Ding-Zhu Du, Xiao-Dong Hu, Man-Kei Lee, and Jun Gu, IEEE TRANSACTIONS.
15.1 Chapter 15 Connecting LANs, Backbone Networks, and Virtual LANs Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or.
Presentation of Wireless sensor network A New Energy Aware Routing Protocol for Wireless Multimedia Sensor Networks Supporting QoS 王 文 毅
O PTIMAL SERVICE TASK PARTITION AND DISTRIBUTION IN GRID SYSTEM WITH STAR TOPOLOGY G REGORY L EVITIN, Y UAN -S HUN D AI Adviser: Frank, Yeong-Sung Lin.
Design, Implementation and Tracing of Dynamic Backpressure Routing for ns-3 José Núñez-Martínez Research Engineer Centre Tecnològic de Telecomunicacions.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Connecting Devices CORPORATE INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL Department of Electronics and.
An Energy Efficient MAC Protocol for Wireless LANs, E.-S. Jung and N.H. Vaidya, INFOCOM 2002, June 2002 吳豐州.
Tufts Wireless Laboratory School Of Engineering Tufts University Paper Review “An Energy Efficient Multipath Routing Protocol for Wireless Sensor Networks”,
Dzmitry Kliazovich University of Luxembourg, Luxembourg
Unit III Bandwidth Utilization: Multiplexing and Spectrum Spreading In practical life the bandwidth available of links is limited. The proper utilization.
Chapter 11.4 END-TO-END ISSUES. Optical Internet Optical technology Protocol translates availability of gigabit bandwidth in user-perceived QoS.
Efficient Resource Allocation for Wireless Multicast De-Nian Yang, Member, IEEE Ming-Syan Chen, Fellow, IEEE IEEE Transactions on Mobile Computing, April.
Queuing Delay 1. Access Delay Some protocols require a sender to “gain access” to the channel –The channel is shared and some time is used trying to determine.
Data Consolidation: A Task Scheduling and Data Migration Technique for Grid Networks Author: P. Kokkinos, K. Christodoulopoulos, A. Kretsis, and E. Varvarigos.
Ensieea Rizwani An energy-efficient management mechanism for large-scale server clusters By: Zhenghua Xue, Dong, Ma, Fan, Mei 1.
Adaptive Power Control Algorithm for Ad Hoc Networks with Short and Long Term Packet Correlations Jun Zhang, Zuyuan Fang, and Brahim Bensaou Dept. of Computer.
1 TCOM 5143 Lecture 10 Centralized Networks: Time Delay and Cost Tradeoffs.
SERENA: SchEduling RoutEr Nodes Activity in wireless ad hoc and sensor networks Pascale Minet and Saoucene Mahfoudh INRIA, Rocquencourt Le Chesnay.
Performance Comparison of Ad Hoc Network Routing Protocols Presented by Venkata Suresh Tamminiedi Computer Science Department Georgia State University.
PATH DIVERSITY WITH FORWARD ERROR CORRECTION SYSTEM FOR PACKET SWITCHED NETWORKS Thinh Nguyen and Avideh Zakhor IEEE INFOCOM 2003.
ElasticTree Michael Fruchtman.
CONGESTION CONTROL.
CS4470 Computer Networking Protocols
Buffer Management for Shared-Memory ATM Switches
Javad Ghaderi, Tianxiong Ji and R. Srikant
Presentation transcript:

A Distributed Energy Saving Approach for Ethernet Switches in Data Centers Weisheng Si 1, Javid Taheri 2, Albert Zomaya 2 1 School of Computing, Engineering, and Mathematics, University of Western Sydney 2 School of IT, University of Sydney 1

Outline Background Related work Main idea of our approach Details of our approach Evaluation Conclusions 2

Energy consumption of data centers Data centers (DCs) contribute a significant portion of global electricity consumption. DCs mainly consist of  Servers: consuming about 60% of the total energy  Ethernet switches (shortened as switches hereafter): consuming about 10%-20%  Infrastructure(distribution, cooling, etc.): 20%-30% This paper considers energy saving for switches 3

Importance of saving energy in switches The percentage of energy consumed by switches will grow considerably in the near future. To accommodate peak traffic load, the network topologies of DCs have to employ a rich connectivity of switches.  For instance, the fat tree topology The peak-traffic time in DCs is much shorter than the non-peak time. 4

The Fat Tree Topology Three levels of switches, bipartite graph in each pod 5

Outline Background Related work Main idea of our approach Description of our approach Evaluation Conclusions 6

Hardware features for energy saving There are altogether three hardware features exploited by the existing approaches to save energy:  Idle an entire switch  Idle a port  Adaptive Link Rate (ALR) 7

Centralized approaches Most of the existing approaches are centralized approaches. They assume a central controller who knows global information including  The entire network topology  The traffic rates among the servers in DCs They obtain an NP-hard problem and propose heuristics to solve the problem. They show that their heuristic algorithms can achieve close results to the optimal solutions. 8

Limitations of centralized approaches Because a central controller needs to collect the global information and then distributes the calculated results, the centralized approaches suffer from the following limitations:  They cannot quickly respond to the traffic change in DCs  They are not scalable. 9

Outline Background Related work Main idea of our approach Description of our approach Evaluation Conclusions 10

Power model IEEE approved the Energy Efficient Ethernet as a standard (IEEE Std 802.3az) in In this standard, a new state for ports called Low Power Idle (LPI) is introduced and the mechanisms for entering and exiting LPI are defined. Therefore, we assume a port has two states: idle and active. Also assume a switch has two states: idle and active. 11

Power model (cont’d) The formula for calculating the power consumed by a switch: 12 There is a penalty for the port state transition between idle and active: this transition takes a short period of time, during which no packets can be transmitted and the same amount of power is consumed as the active state.

We proposed a distributed approach We refer to our approach as eAware hereafter. The main idea of eAware is as follows:  Each switch monitors the queue lengths and utilizations at its ports;  If the queue length at a port exceeds certain threshold, certain other ports will be activated;  If a port has a zero queue length and its utilization is below certain threshold, this port will be made idle;  If all ports on a switch are idle, the entire switch will be made idle. 13

Why examining queue length? Energy saving should not considerably impair the network performance of DCs. The most important metrics on network performance are:  Packet end-to-end delay  Packet loss ratio Both of them are closely related to queue length:  Long queues lead to long end-to-end delays  If queue length is close to buffer capacity, packet drops are prone to happen. 14

Why examining utilization when idling a port? A port can have a zero queue length but a high utilization at the same time  E.g., when a port transmits a network flow which has a constant bit rate slightly less than the port capacity. Measuring utilization needs a period of time, which can prevent ports from oscillating between idle and active states too frequently. 15

Outline Background Related work Main idea of our approach Details of our approach  Some concepts  The increasing port algorithm  The decreasing port algorithm Evaluation Conclusions 16

Some concepts Port order: we stipulate an order on the ports of a switch as their order of appearance from left to right in a network topology.  We require the network topology satisfies that if port i appears left to port j in a switch, port i will connect to a switch appearing left to the switch that port j connects to.  The idea here is to consolidate traffic to the ports and switches in the left, such that the ports and switches in the right can idle to save energy. Port ID: to indicate the above order, if a port p appears left to a port q on a switch, port p has a smaller ID than port q. 17

Some concepts (cont’d) port utilization: the traffic transmission rate at a port during certain period divided by the capacity of this port. Its value ranges between 0 and 1. utilization period: the period for measuring the port utilization. high_length: the threshold of the queue length to trigger the increase of active ports. low_util: the threshold of the port utilization to trigger the decrease of active ports when the queue length is zero. 18

Some concepts (cont’d) port state constraints: (1) if port u becomes active, port v must also become active; (2) port u can idle only when port v can also idle.  The signaling between ports u and v to maintain these two constraints is supported by the link layer mechanisms in IEEE Std 802.3az.  Separation of routing algorithm and our algorithms  The routing algorithm will be unaware of the active/idle states of the ports. 19 UV

Separation of routing algorithm and our algorithms The routing algorithm maintains the routing table 20 Our algorithms will maintain the active/idle states of ports and decide to which port to forward a packet

The increasing port algorithm This algorithm is invoked after the routing table lookup for every packet, dealing with the increase of active ports. 21 Reasons for invocation for every packet:  Only after the routing table is looked up for a packet, we know which ports can be used to forward this packet and thus which ports should be made active to alleviate long queues if present.  The queuing delay of a packet should be reduced whenever possible.

The increasing port algorithm (cont’d) 22 Input: (1) a packet and (2) the n ports returned for this packet from the routing table. Output: (1) the port for forwarding this packet and (2) a port to activate if there should be one.

The increasing port algorithm (cont’d) 1.Assume m of these n (m≤n) ports are currently in active state. One of these m active ports is selected as the port (denoted by port f hereafter) for forwarding this packet. 2.After sending this packet to the buffer of port f, if queue length of port f > high_length, go to step 3. Otherwise, the algorithm ends here. 3.If all n ports are currently active, the algorithm ends. Otherwise, determine the leftmost idle port (denoted by port u hereafter) among those n ports. 4.Set port u to active and also signal port v to become active. 23

The decreasing port algorithm This algorithm is invoked every utilization period, dealing with the decrease of active ports. This algorithm is triggered by a periodical timer instead of packet arrivals, because a port should be able to become idle even when no packet arrives. 24

The decreasing port algorithm (cont’d) 25 Input: the queue length and utilization of each port on this switch. Output: the list of ports to idle. 1.For each port u in this switch, execute the following steps. 2.Calculate the utilization of port u. 3.If (port u is active ) and (queue length of port u = 0) and (utilization of port u < low_util): a)Signal port v to see whether port v can idle. b)If (queue length of port v = 0) and (utilization of port v < low_util), both ports u and v transit to idle state. Otherwise, both ports stay in active state.

Outline Background Related work Main idea of our approach Details of our approach Evaluation Conclusions 26

Experiment Setup We implemented eAware using the network simulator ns-2, and made the source codes available at my homepage. We compare eAware with the approach described in the fat tree paper which considers no energy saving. Hereafter, we label this approach eOblivious. Without loss of generality, the fat tree topology is used as the network topologies. Pareto traffic generator shipped in ns-2 is used to generate the network traffic. 27

A fat tree topology formed in ns-2 28

Default experiment parameters 29

Parameter variations number of pods: we use four values of 4, 6, 8, 10. Note that a larger number of pods implies a greater redundancy of switches in a network. traffic_rate: we use six values of 50M, 100M, 150M, 200M, 250M, 300M. (high_length, low_util): we use three pairs of threshold values: (125 pkts, 0.25), (25 pkts, 0.05), and (5 pkts, 0.01). Note that the first pair of values favors the most on energy efficiency and the least on network performance, and the last pair, vice versa. 30

Evaluation Metrics Percentage of energy saving 31 Percentage of packet loss increase Percentage of packet end-to-end delay increase

Percentage of energy saving (fixing thresholds) 32

Percentage of energy saving (fixing k) 33

Percentage of delay increase (fixing thresholds) 34

Percentage of delay increase (fixing k) 35

Percentage of loss increase (fixing thresholds) 36

Percentage of loss increase (fixing k) 37

Conclusions This paper proposed eAware, a distributed approach based on queue length and utilization to idle/activate ports and switches to save energy for DCs. Due to its distributed and localized nature, eAware can quickly adapt to the traffic changes in DCs and is also scalable. 38

Conclusions (on experiments) EAware can save 30%-50% energy compared with the energy oblivious approach. EAware increases the average packet end-to-end delay by 3%-20%, and the packet loss ratio by 0%-0.9%, thus only impairing the network performance slightly. If the two thresholds high_length and low_util are set to very low values, eAware can achieve similar network performance to the energy oblivious approach but can still save energy in those long periods of low traffic load. 39

Conclusions (a discussion) EAware is independent of the multipath routing protocols adopted by DCs, which brings the advantages of:  Simplicity  Portability A further reason that we do not combine eAware with the multipath routing protocol (e.g., making queue length and utilization part of the routing messages) is:  The queue length and utilization at a switch port (especially the former) can change quickly in a DC environment, while the period of sending routing messages (usually 30s) is too long to propagate these two metrics.  Need to experiment to find out. Theoretically model the approach 40

Thank you! Questions and Suggestions? 41