Machine Learning For the Web: A Unified View Pedro Domingos Dept. of Computer Science & Eng. University of Washington Includes joint work with Stanley.

Slides:



Advertisements
Similar presentations
Online Max-Margin Weight Learning with Markov Logic Networks Tuyen N. Huynh and Raymond J. Mooney Machine Learning Group Department of Computer Science.
Advertisements

Discriminative Training of Markov Logic Networks
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Discriminative Structure and Parameter.
Online Max-Margin Weight Learning for Markov Logic Networks Tuyen N. Huynh and Raymond J. Mooney Machine Learning Group Department of Computer Science.
CPSC 322, Lecture 30Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 30 March, 25, 2015 Slide source: from Pedro Domingos UW.
Exact Inference in Bayes Nets
Markov Logic Networks: Exploring their Application to Social Network Analysis Parag Singla Dept. of Computer Science and Engineering Indian Institute of.
Undirected Probabilistic Graphical Models (Markov Nets) (Slides from Sam Roweis Lecture)
Markov Logic Networks Instructor: Pedro Domingos.
Undirected Probabilistic Graphical Models (Markov Nets) (Slides from Sam Roweis)
Markov Logic: Combining Logic and Probability Parag Singla Dept. of Computer Science & Engineering Indian Institute of Technology Delhi.
Review Markov Logic Networks Mathew Richardson Pedro Domingos Xinran(Sean) Luo, u
Markov Networks.
Efficient Weight Learning for Markov Logic Networks Daniel Lowd University of Washington (Joint work with Pedro Domingos)
Unifying Logical and Statistical AI Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint work with Jesse Davis, Stanley Kok,
Markov Logic: A Unifying Framework for Statistical Relational Learning Pedro Domingos Matthew Richardson
Markov Logic Networks Hao Wu Mariyam Khalid. Motivation.
Speaker:Benedict Fehringer Seminar:Probabilistic Models for Information Extraction by Dr. Martin Theobald and Maximilian Dylla Based on Richards, M., and.
School of Computing Science Simon Fraser University Vancouver, Canada.
GS 540 week 6. HMM basics Given a sequence, and state parameters: – Each possible path through the states has a certain probability of emitting the sequence.
CSE 574 – Artificial Intelligence II Statistical Relational Learning Instructor: Pedro Domingos.
Statistical Relational Learning Pedro Domingos Dept. of Computer Science & Eng. University of Washington.
Lecture 5: Learning models using EM
CSE 574: Artificial Intelligence II Statistical Relational Learning Instructor: Pedro Domingos.
Inference. Overview The MC-SAT algorithm Knowledge-based model construction Lazy inference Lifted inference.
Recursive Random Fields Daniel Lowd University of Washington (Joint work with Pedro Domingos)
Unifying Logical and Statistical AI Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint work with Stanley Kok, Daniel Lowd,
Relational Models. CSE 515 in One Slide We will learn to: Put probability distributions on everything Learn them from data Do inference with them.
Markov Logic Networks: A Unified Approach To Language Processing Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint work with.
Markov Logic: A Simple and Powerful Unification Of Logic and Probability Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint.
Learning, Logic, and Probability: A Unified View Pedro Domingos Dept. Computer Science & Eng. University of Washington (Joint work with Stanley Kok, Matt.
CPSC 422, Lecture 18Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 18 Feb, 25, 2015 Slide Sources Raymond J. Mooney University of.
1 Learning the Structure of Markov Logic Networks Stanley Kok & Pedro Domingos Dept. of Computer Science and Eng. University of Washington.
Statistical Relational Learning Pedro Domingos Dept. Computer Science & Eng. University of Washington.
Pedro Domingos Dept. of Computer Science & Eng.
Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields Yong-Joong Kim Dept. of Computer Science Yonsei.
Markov Logic Parag Singla Dept. of Computer Science University of Texas, Austin.
Markov Logic: A Unifying Language for Information and Knowledge Management Pedro Domingos Dept. of Computer Science & Eng. University of Washington Joint.
1 Naïve Bayes Models for Probability Estimation Daniel Lowd University of Washington (Joint work with Pedro Domingos)
Bayesian networks Classification, segmentation, time series prediction and more. Website: Twitter:
Markov Logic And other SRL Approaches
Statistical Modeling Of Relational Data Pedro Domingos Dept. of Computer Science & Eng. University of Washington.
1 Generative and Discriminative Models Jie Tang Department of Computer Science & Technology Tsinghua University 2012.
Markov Random Fields Probabilistic Models for Images
Markov Logic and Deep Networks Pedro Domingos Dept. of Computer Science & Eng. University of Washington.
Inference Complexity As Learning Bias Daniel Lowd Dept. of Computer and Information Science University of Oregon Joint work with Pedro Domingos.
Markov Logic Networks Pedro Domingos Dept. Computer Science & Eng. University of Washington (Joint work with Matt Richardson)
First-Order Logic and Inductive Logic Programming.
1 Markov Logic Stanley Kok Dept. of Computer Science & Eng. University of Washington Joint work with Pedro Domingos, Daniel Lowd, Hoifung Poon, Matt Richardson,
CPSC 322, Lecture 31Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 33 Nov, 25, 2015 Slide source: from Pedro Domingos UW & Markov.
Exact Inference in Bayes Nets. Notation U: set of nodes in a graph X i : random variable associated with node i π i : parents of node i Joint probability:
CPSC 422, Lecture 32Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 32 Nov, 27, 2015 Slide source: from Pedro Domingos UW & Markov.
CPSC 322, Lecture 30Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 30 Nov, 23, 2015 Slide source: from Pedro Domingos UW.
Markov Logic Pedro Domingos Dept. of Computer Science & Eng. University of Washington.
Happy Mittal (Joint work with Prasoon Goyal, Parag Singla and Vibhav Gogate) IIT Delhi New Rules for Domain Independent Lifted.
Discriminative Training and Machine Learning Approaches Machine Learning Lab, Dept. of CSIE, NCKU Chih-Pin Liao.
Markov Logic: A Representation Language for Natural Language Semantics Pedro Domingos Dept. Computer Science & Eng. University of Washington (Based on.
Progress Report ekker. Problem Definition In cases such as object recognition, we can not include all possible objects for training. So transfer learning.
First Order Representations and Learning coming up later: scalability!
Scalable Statistical Relational Learning for NLP William Y. Wang William W. Cohen Machine Learning Dept and Language Technologies Inst. joint work with:
An Introduction to Markov Logic Networks in Knowledge Bases
Markov Logic Networks for NLP CSCI-GA.2591
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 30
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 29
Logic for Artificial Intelligence
Markov Networks.
Learning Markov Networks
Administrivia What: LTI Seminar When: Friday Oct 30, 2009, 2:00pm - 3:00pm Where: 1305 NSH Faculty Host: Noah Smith Title: SeerSuite: Enterprise Search.
Mostly pilfered from Pedro’s slides
Markov Networks.
Presentation transcript:

Machine Learning For the Web: A Unified View Pedro Domingos Dept. of Computer Science & Eng. University of Washington Includes joint work with Stanley Kok, Daniel Lowd, Hoifung Poon, Matt Richardson, Parag Singla, Marc Sumner, and Jue Wang

Overview Motivation Background Markov logic Inference Learning Software Applications Discussion

Web Learning Problems Hypertext classification Search ranking Personalization Recommender systems Wrapper induction Information extraction Information integration Deep Web Semantic Web Ad placement Content selection Auctions Social networks Mass collaboration Spam filtering Reputation systems Performance optimization Etc.

Machine Learning Solutions Naïve Bayes Logistic regression Max. entropy models Bayesian networks Markov random fields Log-linear models Exponential models Gibbs distributions Boltzmann machines ERGMs Hidden Markov models Cond. random fields SVMs Neural networks Decision trees K-nearest neighbor K-means clustering Mixture models LSI Etc.

How Do We Make Sense of This? Does a practitioner have to learn all the algorithms? And figure out which one to use each time? And which variations to try? And how to frame the problem as ML? And how to incorporate his/her knowledge? And how to glue the pieces together? And start from scratch each time? There must be a better way

Characteristics of Web Problems Samples are not i.i.d. (objects depend on each other) Objects have lots of structure (or none at all) Multiple problems are tied together Massive amounts of data (but unlabeled) Rapid change Too many opportunities... and not enough experts

We Need a Language That allows us to easily define standard models That provides a common framework That is automatically compiled into learning and inference code that executes efficiently That makes it easy to encode practitioner’s knowledge That allows models to be composed and reused

Markov Logic Syntax: Weighted first-order formulas Semantics: Templates for Markov nets Inference: Lifted belief propagation, etc. Learning: Voted perceptron, pseudo- likelihood, inductive logic programming Software: Alchemy Applications: Information extraction, text mining, social networks, etc.

Overview Motivation Background Markov logic Inference Learning Software Applications Discussion

Markov Networks Undirected graphical models Cancer CoughAsthma Smoking Potential functions defined over cliques SmokingCancer Ф(S,C) False 4.5 FalseTrue 4.5 TrueFalse 2.7 True 4.5

Markov Networks Undirected graphical models Log-linear model: Weight of Feature iFeature i Cancer CoughAsthma Smoking

First-Order Logic Symbols: Constants, variables, functions, predicates E.g.: Anna, x, MotherOf(x), Friends(x, y) Logical connectives: Conjunction, disjunction, negation, implication, quantification, etc. Grounding: Replace all variables by constants E.g.: Friends (Anna, Bob) World: Assignment of truth values to all ground atoms

Example: Friends & Smokers

Overview Motivation Background Markov logic Inference Learning Software Applications Discussion

Markov Logic A logical KB is a set of hard constraints on the set of possible worlds Let’s make them soft constraints: When a world violates a formula, It becomes less probable, not impossible Give each formula a weight (Higher weight  Stronger constraint)

Definition A Markov Logic Network (MLN) is a set of pairs (F, w) where F is a formula in first-order logic w is a real number Together with a set of constants, it defines a Markov network with One node for each grounding of each predicate in the MLN One feature for each grounding of each formula F in the MLN, with the corresponding weight w

Example: Friends & Smokers

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers Cancer(A) Smokes(A)Smokes(B) Cancer(B) Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers Cancer(A) Smokes(A)Friends(A,A) Friends(B,A) Smokes(B) Friends(A,B) Cancer(B) Friends(B,B) Two constants: Anna (A) and Bob (B)

Markov Logic Networks MLN is template for ground Markov nets Probability of a world x : Typed variables and constants greatly reduce size of ground Markov net Functions, existential quantifiers, etc. Infinite and continuous domains Weight of formula iNo. of true groundings of formula i in x

Relation to Statistical Models Special cases: Markov networks Markov random fields Bayesian networks Log-linear models Exponential models Max. entropy models Gibbs distributions Boltzmann machines Logistic regression Hidden Markov models Conditional random fields Markov logic allows objects to be interdependent (non-i.i.d.) Markov logic makes it easy to combine and reuse these models

Relation to First-Order Logic Infinite weights  First-order logic Satisfiable KB, positive weights  Satisfying assignments = Modes of distribution Markov logic allows contradictions between formulas

Overview Motivation Background Markov logic Inference Learning Software Applications Discussion

Inference MAP/MPE state MaxWalkSAT LazySAT Marginal and conditional probabilities MCMC: Gibbs, MC-SAT, etc. Knowledge-based model construction Lifted belief propagation

Inference MAP/MPE state MaxWalkSAT LazySAT Marginal and conditional probabilities MCMC: Gibbs, MC-SAT, etc. Knowledge-based model construction Lifted belief propagation

Lifted Inference We can do inference in first-order logic without grounding the KB (e.g.: resolution) Let’s do the same for inference in MLNs Group atoms and clauses into “indistinguishable” sets Do inference over those First approach: Lifted variable elimination (not practical) Here: Lifted belief propagation

Belief Propagation Nodes (x) Features (f)

Lifted Belief Propagation Nodes (x) Features (f)

Lifted Belief Propagation Nodes (x) Features (f)

Lifted Belief Propagation   ,  : Functions of edge counts Nodes (x) Features (f)

Lifted Belief Propagation Form lifted network composed of supernodes and superfeatures Supernode: Set of ground atoms that all send and receive same messages throughout BP Superfeature: Set of ground clauses that all send and receive same messages throughout BP Run belief propagation on lifted network Guaranteed to produce same results as ground BP Time and memory savings can be huge

Forming the Lifted Network 1. Form initial supernodes One per predicate and truth value (true, false, unknown) 2. Form superfeatures by doing joins of their supernodes 3. Form supernodes by projecting superfeatures down to their predicates Supernode = Groundings of a predicate with same number of projections from each superfeature 4. Repeat until convergence

Theorem There exists a unique minimal lifted network The lifted network construction algo. finds it BP on lifted network gives same result as on ground network

Representing Supernodes And Superfeatures List of tuples: Simple but inefficient Resolution-like: Use equality and inequality Form clusters (in progress)

Overview Motivation Background Markov logic Inference Learning Software Applications Discussion

Learning Data is a relational database Closed world assumption (if not: EM) Learning parameters (weights) Generatively Discriminatively Learning structure (formulas)

Generative Weight Learning Maximize likelihood Use gradient ascent or L-BFGS No local maxima Requires inference at each step (slow!) No. of true groundings of clause i in data Expected no. true groundings according to model

Pseudo-Likelihood Likelihood of each variable given its neighbors in the data [Besag, 1975] Does not require inference at each step Consistent estimator Widely used in vision, spatial statistics, etc. But PL parameters may not work well for long inference chains

Discriminative Weight Learning Maximize conditional likelihood of query ( y ) given evidence ( x ) Approximate expected counts by counts in MAP state of y given x No. of true groundings of clause i in data Expected no. true groundings according to model

w i ← 0 for t ← 1 to T do y MAP ← Viterbi(x) w i ← w i + η [count i (y Data ) – count i (y MAP )] return ∑ t w i / T Voted Perceptron Originally proposed for training HMMs discriminatively [Collins, 2002] Assumes network is linear chain

w i ← 0 for t ← 1 to T do y MAP ← MaxWalkSAT(x) w i ← w i + η [count i (y Data ) – count i (y MAP )] return ∑ t w i / T Voted Perceptron for MLNs HMMs are special case of MLNs Replace Viterbi by MaxWalkSAT Network can now be arbitrary graph

Structure Learning Generalizes feature induction in Markov nets Any inductive logic programming approach can be used, but... Goal is to induce any clauses, not just Horn Evaluation function should be likelihood Requires learning weights for each candidate Turns out not to be bottleneck Bottleneck is counting clause groundings Solution: Subsampling

Structure Learning Initial state: Unit clauses or hand-coded KB Operators: Add/remove literal, flip sign Evaluation function: Pseudo-likelihood + Structure prior Search: Beam [Kok & Domingos, 2005] Shortest-first [Kok & Domingos, 2005] Bottom-up [Mihalkova & Mooney, 2007]

Overview Motivation Background Markov logic Inference Learning Software Applications Discussion

Alchemy Open-source software including: Full first-order logic syntax MAP and marginal/conditional inference Generative & discriminative weight learning Structure learning Programming language features alchemy.cs.washington.edu

Overview Motivation Background Markov logic Inference Learning Software Applications Discussion

Applications Information extraction Entity resolution Link prediction Collective classification Web mining Natural language processing Social network analysis Ontology refinement Activity recognition Intelligent assistants Etc.

Information Extraction Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational Domains” (AAAI-06). Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp ). Boston, MA: AAAI Press. H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

Segmentation Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational Domains” (AAAI-06). Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp ). Boston, MA: AAAI Press. H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence. Author Title Venue

Entity Resolution Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational Domains” (AAAI-06). Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp ). Boston, MA: AAAI Press. H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

Entity Resolution Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational Domains” (AAAI-06). Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp ). Boston, MA: AAAI Press. H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

State of the Art Segmentation HMM (or CRF) to assign each token to a field Entity resolution Logistic regression to predict same field/citation Transitive closure Alchemy implementation: Seven formulas

Types and Predicates token = {Parag, Singla, and, Pedro,...} field = {Author, Title, Venue} citation = {C1, C2,...} position = {0, 1, 2,...} Token(token, position, citation) InField(position, field, citation) SameField(field, citation, citation) SameCit(citation, citation)

Types and Predicates token = {Parag, Singla, and, Pedro,...} field = {Author, Title, Venue,...} citation = {C1, C2,...} position = {0, 1, 2,...} Token(token, position, citation) InField(position, field, citation) SameField(field, citation, citation) SameCit(citation, citation) Optional

Types and Predicates Evidence token = {Parag, Singla, and, Pedro,...} field = {Author, Title, Venue} citation = {C1, C2,...} position = {0, 1, 2,...} Token(token, position, citation) InField(position, field, citation) SameField(field, citation, citation) SameCit(citation, citation)

token = {Parag, Singla, and, Pedro,...} field = {Author, Title, Venue} citation = {C1, C2,...} position = {0, 1, 2,...} Token(token, position, citation) InField(position, field, citation) SameField(field, citation, citation) SameCit(citation, citation) Types and Predicates Query

Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”) Formulas

Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”) Formulas

Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”) Formulas

Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) ^ !Token(“.”,i,c) InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

Results: Segmentation on Cora

Results: Matching Venues on Cora

Overview Motivation Background Markov logic Inference Learning Software Applications Discussion

Conclusion Web provides plethora of learning problems Machine learning provides plethora of solutions We need a unifying language Markov logic: Use weighted first-order logic to define statistical models Efficient inference and learning algorithms (but Web scale still requires manual coding) Many successful applications (e.g., information extraction) Open-source software / Web site: Alchemy alchemy.cs.washington.edu