Geodesy and Map Projections Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of a curved earth to a.

Slides:



Advertisements
Similar presentations
The Ellipsoid Faculty of Applied Engineering and Urban Planning
Advertisements

Geodesy, Map Projections and Coordinate Systems
Working with Map Projections
A guide to coordinate systems, datums, projections, and geoids.
Datum & Coordinate Systems
Nicholas A. Procopio, Ph.D, GISP
Geodesy, Map Projections and Coordinate Systems
Map Projections (2/2) Francisco Olivera, Ph.D., P.E. Center for Research in Water Resources University of Texas at Austin.
CS 128/ES Lecture 3a1 Map projections. CS 128/ES Lecture 3a2 The dilemma Maps are flat, but the Earth is not! Producing a perfect map is like.
Topic 2 – Spatial Representation
CS 128/ES Lecture 2b1 Coordinate systems & projections.
Map Projections (1/2) Francisco Olivera, Ph.D., P.E. Center for Research in Water Resources University of Texas at Austin.
Geodesy and Map Projections
Waldo Tobler’s Classic Paper, 1979
Map Projections Francisco Olivera, Ph.D., P.E. Srikanth Koka
Map projections CS 128/ES Lecture 3a.
Geographic Information Systems
Harry Williams, Cartography
Projections and Coordinate Systems
Overview Ellipsoid Spheroid Geoid Datum Projection Coordinate System.
Geodesy, Map Projections and Coordinate Systems Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of.
GIS for Environmental Engineering
Geodesy, Map Projections and Coordinate Systems
Geodesy, Map Projections and Coordinate Systems
Coordinate Systems Spheroids and spheres. Datums. Coordinate systems.
Geographic Information Systems Coordinate Systems.
shops/gis/docs/projections.ppt.
GEOREFERENCING By Okan Fıstıkoğlu. GEOGRAPHIC COORDINATE SYSTEMS Geographic Coordinate System (GCS) uses a three dimensional spherical surface to define.
CS 128/ES Lecture 3a1 Map projections. CS 128/ES Lecture 3a2 The dilemma Maps are flat, but the Earth is not! Producing a perfect map is like.
Map Projections Francisco Olivera, Ph.D., P.E. Srikanth Koka Department of Civil Engineering Texas A&M University.
Cartography: the science of map making A Round World in Plane Terms.
Coordinate Systems and Projections. Geodesy, Map Projections and Coordinate Systems Geodesy - the shape of the earth and definition of earth datums Map.
All maps will provide you with a Arrow indicating both truth North (the precise top axis of the earth’s spheroid) and a magnetic north which indicates.
Map Basics, partII GEOG 370 Christine Erlien, Instructor.
Map Basics Lecture #3, Intro to GIS spring Topics Map definitions Types of maps Map projections Geodetic Datums Coordinate Systems.
L 5 Map Projections Lecture Map projections are used to transfer or “project” geographical coordinates onto a flat surface.. There are many projections:
GIS in Water Resources Review for Midterm Exam. Latitude and Longitude in North America 90 W 120 W 60 W 30 N 0 N 60 N Austin: (30°N, 98°W) Logan: (42°N,
Geodesy, Map Projections and Coordinate Systems Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of.
The Round Earth to Flat Map: Map Projections for Designers SP 240 Cartography Alex Chaucer.
Map projections and datums
Map Projections.
Geodesy, Map Projections and Coordinate Systems Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of.
Basic Coordinate Systems Grid System RG 620 May 23, 2014 Institute of Space Technology, Karachi Grid System RG 620 May 23, 2014 Institute of Space Technology,
Review of Projections and Coordinate Systems
What is Geodesy ?. Satellite Observations of the Earth European Remote Sensing satellite, ERS-1 from 780Km ERS-1 depicts the earth’s shape without water.
Geodesy, Map Projections and Coordinate Systems Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of.
Czech Technical University in Prague Faculty of Transportation Sciences Department of Transport Telematics Doc. Ing. Pavel Hrubeš, Ph.D. Geographical Information.
Distributed Modeling in Hydrology using Digital Data and Geographic Information Systems David Tarboton Utah State University Course presented at the University.
Chapter 11 Coordinate Systems. Outline About coordinate systems Geographic coordinate systems Projected coordinate systems Raster coordinate systems Common.
Geodesy and Map Projections Borrowed and expanded by Joe Naumann, UMSL
Geodesy, Map Projections and Coordinate Systems
Coordinate Systems and Map Projections
Introduction to GIS David R. Maidment
Geodesy, Map Projections and Coordinate Systems
Spatial Referencing.
Georeferencing Ming-Chun Lee.
Geodesy, Map Projections and Coordinate Systems
Geodesy, Map Projections and Coordinate Systems
Overview Ellipsoid Spheroid Geoid Datum Projection Coordinate System.
Geographic Datums & Coordinates
Review for Midterm Exam
Harry Williams, Cartography
A guide to coordinate systems, datums, projections, and geoids.
Maps Base maps Coordinate Systems, Datums, Projections
Datums and Coordinate Systems
A guide to coordinate systems, datums, projections, and geoids.
COORDINATE GEOMETRY Except for Geodetic Control Surveys, most surveys are referenced to plane rectangular coordinate systems. Frequently State Plane Coordinate.
Geodesy, Map Projections and Coordinate Systems
Presentation transcript:

Geodesy and Map Projections Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of a curved earth to a flat map Coordinate systems - (x,y) coordinate systems for map data

Types of Coordinate Systems (1) Global Cartesian coordinates (x,y,z) for the whole earth (2) Geographic coordinates ( , z) (3) Projected coordinates (x, y, z) on a local area of the earth’s surface The z-coordinate in (1) and (3) is defined geometrically; in (2) the z-coordinate is defined gravitationally

Global Cartesian Coordinates (x,y,z) O X Z Y Greenwich Meridian Equator

Global Positioning System (GPS) 24 satellites in orbit around the earth Each satellite is continuously radiating a signal at speed of light, c GPS receiver measures time lapse,  t, since signal left the satellite,  r = c  t Position obtained by intersection of radial distances,  r, from each satellite Differential correction improves accuracy

Global Positioning using Satellites r1r1 r3r3 r2r2 r4r4 Number of Satellites Object Defined Sphere Circle Two Points Single Point

Geographic Coordinates ( , z) Latitude (  ) and Longitude ( ) defined using an ellipsoid, an ellipse rotated about an axis Elevation (z) defined using geoid, a surface of constant gravitational potential Earth datums define standard values of the ellipsoid and geoid

Shape of the Earth We think of the earth as a sphere It is actually a spheroid, slightly larger in radius at the equator than at the poles

Ellipse P F2F2 O F1F1 a b X Z   An ellipse is defined by: Focal length =  Distance (F1, P, F2) is constant for all points on ellipse When  = 0, ellipse = circle For the earth: Major axis, a = 6378 km Minor axis, b = 6357 km Flattening ratio, f = (a-b)/a ~ 1/300

Ellipsoid or Spheroid Rotate an ellipse around an axis O X Z Y a a b Rotational axis

Standard Ellipsoids Ref: Snyder, Map Projections, A working manual, USGS Professional Paper 1395, p.12

Horizontal Earth Datums An earth datum is defined by an ellipse and an axis of rotation NAD27 (North American Datum of 1927) uses the Clarke (1866) ellipsoid on a non geocentric axis of rotation NAD83 (NAD,1983) uses the GRS80 ellipsoid on a geocentric axis of rotation WGS84 (World Geodetic System of 1984) uses GRS80, almost the same as NAD83

Definition of Latitude,  (1) Take a point S on the surface of the ellipsoid and define there the tangent plane, mn (2) Define the line pq through S and normal to the tangent plane (3) Angle pqr which this line makes with the equatorial plane is the latitude , of point S O  S m n q p r

Cutting Plane of a Meridian P Meridian Equator plane Prime Meridian

Definition of Longitude, 0°E, W 90°W (-90 °) 180°E, W 90°E (+90 °) -120° -30° -60° -150° 30° -60° 120° 150° = the angle between a cutting plane on the prime meridian and the cutting plane on the meridian through the point, P P

Latitude and Longitude on a Sphere Meridian of longitude Parallel of latitude  X Y Z N E W   =0-90°S P O R =0-180°E  =0-90°N Greenwich meridian =0° Equator =0° =0-180°W - Geographic longitude  - Geographic latitude R - Mean earth radius O - Geocenter

Length on Meridians and Parallels 0 N 30 N  ReRe ReRe R R A B C  (Lat, Long) = ( , ) Length on a Meridian: AB = R e  (same for all latitudes) Length on a Parallel: CD = R  R e  Cos  (varies with latitude) D

Example: What is the length of a 1º increment along on a meridian and on a parallel at 30N, 90W? Radius of the earth = 6370 km. Solution: A 1º angle has first to be converted to radians  radians = 180 º, so 1º =  /180 = /180 = radians For the meridian,  L = R e  km For the parallel,  L = R e  Cos   Cos   km Parallels converge as poles are approached

Representations of the Earth Earth surface Ellipsoid Sea surface Geoid Mean Sea Level is a surface of constant gravitational potential called the Geoid

Geoid and Ellipsoid Ocean Geoid Earth surface Ellipsoid Gravity Anomaly

Definition of Elevation Elevation Z P z = z p z = 0 Mean Sea level = Geoid Land Surface Elevation is measured from the Geoid

Vertical Earth Datums A vertical datum defines elevation, z NGVD29 (National Geodetic Vertical Datum of 1929) NAVD88 (North American Vertical Datum of 1988) takes into account a map of gravity anomalies between the ellipsoid and the geoid

Converting Vertical Datums Corps program Corpscon (not in ArcInfo) – Point file attributed with the elevation difference between NGVD 29 and NAVD 88 NGVD 29 terrain + adjustment = NAVD 88 terrain elevation

Geodesy and Map Projections Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of a curved earth to a flat map Coordinate systems - (x,y) coordinate systems for map data

Earth to Globe to Map Representative Fraction Globe distance Earth distance = Map Scale: Map Projection: Scale Factor Map distance Globe distance = (e.g. 1:24,000) (e.g )

Geographic and Projected Coordinates (  ) (x, y) Map Projection

Projection onto a Flat Surface

Types of Projections Conic (Albers Equal Area, Lambert Conformal Conic) - good for East-West land areas Cylindrical (Transverse Mercator) - good for North-South land areas Azimuthal (Lambert Azimuthal Equal Area) - good for global views

Conic Projections (Albers, Lambert)

Cylindrical Projections (Mercator) Transverse Oblique

Azimuthal (Lambert)

Albers Equal Area Conic Projection

Lambert Conformal Conic Projection

Universal Transverse Mercator Projection

Lambert Azimuthal Equal Area Projection

Projections Preserve Some Earth Properties Area - correct earth surface area (Albers Equal Area) important for mass balances Shape - local angles are shown correctly (Lambert Conformal Conic) Direction - all directions are shown correctly relative to the center (Lambert Azimuthal Equal Area) Distance - preserved along particular lines Some projections preserve two properties

Geodesy and Map Projections Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of a curved earth to a flat map Coordinate systems - (x,y) coordinate systems for map data

Coordinate Systems Universal Transverse Mercator (UTM) - a global system developed by the US Military Services State Plane Coordinate System - civilian system for defining legal boundaries Texas State Mapping System - a statewide coordinate system for Texas

Coordinate System (  o, o ) (x o,y o ) X Y Origin A planar coordinate system is defined by a pair of orthogonal (x,y) axes drawn through an origin

Universal Transverse Mercator Uses the Transverse Mercator projection Each zone has a Central Meridian ( o ), zones are 6° wide, and go from pole to pole 60 zones cover the earth from East to West Reference Latitude (  o ), is the equator (Xshift, Yshift) = (x o,y o ) = (500000, 0) in the Northern Hemisphere, units are meters

UTM Zone 14 Equator -120° -90 ° -60 ° -102°-96° -99° Origin 6°

State Plane Coordinate System Defined for each State in the United States East-West States (e.g. Texas) use Lambert Conformal Conic, North-South States (e.g. California) use Transverse Mercator Texas has five zones (North, North Central, Central, South Central, South) to give accurate representation Greatest accuracy for local measurements

Texas Centric Mapping System Designed to give State-wide coverage of Texas without gaps Lambert Conformal Conic projection with standard parallels 1/6 from the top and 1/6 from bottom of the State Adapted to Albers equal area projection for working in hydrology

Standard Hydrologic Grid (SHG) Developed by Hydrologic Engineering Center, US Army Corps of Engineers Uses USGS National Albers Projection Parameters Used for defining a grid over the US with cells of equal area and correct earth surface area everywhere in the country

ArcInfo 8 Reference Frames Defined for a feature dataset in ArcCatalog Coordinate System –Projected –Geographic X/Y Domain Z Domain M Domain

Coordinate Systems Geographic coordinates (decimal degrees) Projected coordinates (length units, ft or meters)

X/Y Domain (Min X, Min Y) (Max X, Max Y) Maximum resolution of a point = Map Units / Precision e.g. map units = meters, precision = 1000, then maximum resolution = 1 meter/1000 = 1 mm on the ground Long integer max value of 2 31 = 2,147,483,645

Summary Concepts Two basic locational systems: geometric or Cartesian (x, y, z) and geographic or gravitational ( , z) Mean sea level surface or geoid is approximated by an ellipsoid to define an earth datum which gives (  and distance above geoid gives (z)

Summary Concepts (Cont.) To prepare a map, the earth is first reduced to a globe and then projected onto a flat surface Three basic types of map projections: conic, cylindrical and azimuthal A particular projection is defined by a datum, a projection type and a set of projection parameters

Summary Concepts (Cont.) Standard coordinate systems use particular projections over zones of the earth’s surface Types of standard coordinate systems: UTM, State Plane, Texas State Mapping System, Standard Hydrologic Grid Reference Frame in ArcInfo 8 requires projection and map extent