1 Stephan’s Quintet (SQ): A Multi-galaxy Collision C. K. Xu IPAC, Caltech.

Slides:



Advertisements
Similar presentations
207th AAS Meeting Washington D.C., 8-13 January The Spitzer SWIRE Legacy Program Spitzer Wide-Area Infrared Extragalactic Survey Mari Polletta (UCSD)
Advertisements

The Two Tightest Correlations: FIR-RC and FIR-HCN Yu GAO Purple Mountain Observatory, Nanjing Chinese Academy of Sciences.
From GMC-SNR interaction to gas-rich galaxy-galaxy merging Yu GAO Purple Mountain Observatory, Nanjing, China Chinese Academy of Sciences.
Toyoaki Suzuki (ISAS/JAXA) Hidehiro Kaneda (Nagoya Univ.) Takashi Onaka (Tokyo Univ.)
A CO(3-2) Survey of Warm Molecular Gas in Nearby Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger.
Molecular Gas, Dense Molecular Gas and the Star Formation Rate in Galaxies (near and far) P. Solomon Molecular Gas Mass as traced by CO emission and the.
Front X-ray Studies of Galaxies and Galaxy Systems Jesper Rasmussen Ph.D. Defence Astronomical Observatory, Univ. of Copenhagen 17th March 2004.
Lecture 21 updates. Hubble’s STIS Spectrograph Please include this image at the start of the images of STIS.
May 17, 2010MFPO 2010, Krakow1 Dwarf galaxies and the Magnetisation of the IGM Uli Klein ?
X-ray Properties of Five Galactic SNRs arXiv: Thomas G. Pannuti et al.
Mrk334: is a connection between nucleus activity and merging of a companion? Smirnova A.A., Moiseev A.V., Afanasiev V.L. Special Astrophysical Observatory.
Ionized and neutral gas in the starburst galaxy NGC 5253 Australia Telescope National Facility (ATNF, Australia) Galaxies in the Local Volume – Sydney.
Observations of Molecular Outflows in Quasars Anna Boehle March 2 nd, 2012.
HI Gas as Function of Environment When and where do galaxies stop accreting cool gas? How do they loose the cool gas? When do they stop forming stars?
Evolution of Extreme Starbursts & The Star Formation Law Yu Gao Purple Mountain Observatory, CAS.
Chania, Crete, August 2004 “The environment of galaxies” Pierre-Alain Duc Recycling in the galaxy environment F. Bournaud J. Braine U. Lisenfeld P. Amram.
LOGO The Chemical and Color Evolution of M Reporter: Jun Yin (Shao) Supervisor: Jinliang Hou (Shao)
Galaxies Cluster formation : Numerical Simulations and XMM Observations JL Sauvageot *, Elena Belsole *,R.Teyssier *, Herve Bourdin + Service d'Astrophysique.
RESULTS AND ANALYSIS Mass determination Kauffmann et al. determined masses using SDSS spectra (Hdelta & D4000) Comparison with our determination: Relative.
Figure 8. Input parameters for a tilted-ring model of the HI in NGC We used 40 rings of width 29”, corresponding to a width of ~1.2 kpc at a distance.
Galaxies. First spiral nebulae found in 1845 by the Earl of Rosse. Speculated it was beyond our Galaxy "Great Debate" between Shapley and Curtis.
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
ULTRALUMINOUS INFRARED GALAXIES: 2D KINEMATICS AND STAR FORMATION L. COLINA, IEM/CSIC S. ARRIBAS, STSCI & CSIC D. CLEMENTS, IMPERIAL COLLEGE A. MONREAL,
Recent Imaging Results from SINGS G. J. Bendo, R. C. Kennicutt, L. Armus, D. Calzetti, D. A. Dale, B. T. Draine, C. W. Engelbracht, K. D. Gordon, A. D.
The Complex Star Formation History of NGC 1569 L. Angeretti 1, M. Tosi 2, L. Greggio 3, E. Sabbi 1, A. Aloisi 4, C. Leitherer 4 The object The observations.
Susan CartwrightOur Evolving Universe1 Galaxy evolution n Why do galaxies come in such a wide variety of shapes and sizes? n How are they formed? n How.
A1143 Quiz 4 Distribution of Grades: No Curve. Milky Way: Bright Band Across Sky (Resolved by Galileo)
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Figure 2: H  emission from NGC 1569 (Hunter et al. 1993). Note the numerous filaments extending far into the halo and the prominent H  arm in the west.
130 cMpc ~ 1 o z = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI 21cm.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Galaxy Evolution in the Virgo Cluster Bernd Vollmer CDS, Observatoire de Strasbourg, France In collaboration with: P. Amram, C. Balkowski, R. Beck, A.
Galaxy Collisions Top left is an image of the Cartwheel galaxy. The ring of young stars was likely created as a smaller galaxy passed through the disk.
Unravelling the formation and evolutionary histories of the most massive galaxies Ilani Loubser (Univ. of the Western Cape)
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 25.
Gas Dynamics, AGN, Star Formation and ISM in Nearby Galaxies Eva Schinnerer (MPIA) S. Haan, F. Combes, S. Garcia-Burillo, C.G. Mundell, T. Böker, D.S.
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
The J Group: Evolution and Interaction Virginia Kilborn Swinburne University of Technology Sarah Sweet (Australian National University) Gerhardt.
Galaxy Wakes – Theory & Observations Irini Sakelliou University of Birmingham D.M. Acreman, T.J. Ponman, I.R. Stevens University of Birmingham M.R. Merrifield.
The interaction between galaxies and their environment Trevor Ponman University of Birmingham Jesper Rasmussen Carnegie Observatories.
Starburst in NGC 6090 Junzhi Wang Purple mountain observatory Collaborators: Qizhou Zhang, Zhong Wang, Giovanni G. Fazio, Paul T. P. Ho (CFA) Yuefang Wu.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA)
Gas stripping and its Effect on the Stellar Populations of Virgo Cluster Galaxies Hugh H. Crowl UMass with Jeff Kenney (Yale)‏ Jacqueline van Gorkom (Columbia),
Naoyuki Tamura (University of Durham) The Universe at Redshifts from 1 to 2 for Early-Type Galaxies ~ Unveiling “Build-up Era” with FMOS ~
Delphine Marcillac Moriond 2005 When UV meets IR... 1 IR properties of distant IR galaxies Delphine Marcillac (PhD student) Supervisor : D. Elbaz In collaboration.
Radio Galaxies part 4. Apart from the radio the thin accretion disk around the AGN produces optical, UV, X-ray radiation The optical spectrum emitted.
Our Changing View of the Galaxy NGC 2915 Ed Elson Department of Astronomy, UCT Supervised by: Prof. R. C. Kraan-Korteweg Prof W. J. G. de Blok 3 rd Annual.
Cornelia C. Lang University of Iowa collaborators:
Evidence for a Population of Massive Evolved Galaxies at z > 6.5 Bahram Mobasher M.Dickinson NOAO H. Ferguson STScI M. Giavalisco, M. Stiavelli STScI Alvio.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Probing the Dynamics of Galaxy-Gas Interactions in Groups and Clusters with Chandra and XMM-Newton Marie Machacek Smithsonian Astrophysical Observatory.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Compact groups of galaxies: small, dense, elusive by: E. Pompei - European Southern Observatory A. Iovino - Osservatorio astronomico di Brera-Milano V.
Chapter 25 Galaxies and Dark Matter. 25.1Dark Matter in the Universe 25.2Galaxy Collisions 25.3Galaxy Formation and Evolution 25.4Black Holes in Galaxies.
Neutral Atomic Hydrogen Gas at Forbidden Velocities in the Galactic Plane Ji-hyun Kang NAIC Seoul National University Supervisor :Bon-Chul Koo 213 th AAS.
Imaging Dust in Starburst Outflows with GALEX Charles Hoopes Tim Heckman Dave Strickland and the GALEX Science Team March 7, 2005 Galactic Flows: The Galaxy/IGM.
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
Ewan O’Sullivan (SAO) thanks to: J. Vrtilek, L. David, S. Giacintucci, S. Raychaudhury, A. Zezas, and others.
Caught in the act Caught in the act - witnessing the transformation of a spiral galaxy Jesper Rasmussen + Trevor Ponman, John Mulchaey.
9 Gyr of massive galaxy evolution Bell (MPIA), Wolf (Oxford), Papovich (Arizona), McIntosh (UMass), and the COMBO-17, GEMS and MIPS teams Baltimore 27.
The Formation of the HE System 胡剑 清华天体物理中心 Apr. 22, 2005.
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
IMF inferred based on field stars (red) and based on a variety of clusters (blue, green, and black) (Kroupa 2002)
SOFIA/GREAT observations of S106 Dynamics of the warm gas R
Hugh H. Crowl UMass with Jeff Kenney (Yale)
SOFIA/GREAT observations of S106 Dynamics of the warm gas R
The X-ray Morphology and Spectra of Galactic Disks
Millimeter Megamasers and AGN Feedback
Cornelia C. Lang University of Iowa collaborators:
Presentation transcript:

1 Stephan’s Quintet (SQ): A Multi-galaxy Collision C. K. Xu IPAC, Caltech

2 “Birth Certificate”: M.E. Stephan, 1876, CR Acad. Sci. Paris vol. 84, p641.

3 Why is SQ interesting? (1)It looks fantastic in every waveband. (2)It reveals surprises every time being looked at by a new instrument. (3) Behind all the spectacular images and strange spectrographs, lies a very complex web of galaxy-galaxy and galaxy-IGM interactions. (4) It shows all kinds of interaction induced phenomena, including a large scale shock (~40 kpc), an IGM starburst, long tidal tails with tidal dwarf candidates, and a type II AGN. (5) How useful is the knowledge gained in studying this local (94 Mpc) system to our understanding of those multi-galaxy systems afar, such as multi-nuclei ULIRGs and multi-mergers in deep surveys? Who cares!

km/s786 km/s km/s 6550 km/s 6583 km/s (Sbc sy2) (S0/a) (E) (Sbc) (E) (Sd) Gallagher et al. (2001, AJ 122,163) SQ seen in deep R band:

5 1.4 GHz (VLA B-Array) Radio Continuum --- A gigantic shock front (~40 kpc) in the intragroup medium (IGM) Allan & Hartsuiker 1972, Nat GHz Westerbork Xu et al. 2003, ApJ 595, 665

6 Trinchieri et al. (2003, A&A, 401, 173) X-ray (0.5-3 keV) on H  image X-ray (Chandra) on B-band image

7 [OI] [SII] H  /[NII] [SII] Xu et al. 2003, ApJ 595, 665 Blue contours: H  (5700 km/sec comp.) Red contours: H  (6600 km/sec comp.) Spectroscopic confirmation of shock excitation: double spectrograph, Palomar 200”

8 R-band ISOCAM 15  m A starburst in the IGM -- A product of high speed (900km/s) galaxy-IGM collision (Xu et al. 1999, ApJ 512, 178)

9 Blue contours: H  (5700 km/sec comp., intruder) Red contours: H  (6600 km/sec comp., IGM) IGM starburst (“SQ-A”) (Xu et al. 1999, ApJ 512, 178)

10 [OI] [SII] H  /[NII] [SII] H  /[NII] [SII] Shock front Regions: SQ-A region (IGM starburst) Blue contours: H  (5700 km/sec comp.) Red contours: H  (6600 km/sec comp.)

11 SQ-A: A collision triggered starburst (Xu et al. 1999; 2003), or a tidal dwarf (Plana et al. 1999, ApJL 516, L69) ? Comparison: Obs. facts collision tidal dwarf 2 velocity (6600/6000 km/s) yes no (IGM/intruder) time scale OK (10 7 yr) too long (10 8 yr) age of the starburst: 10 7 yr OK no spatial link to the shock yes no

km/s HI 6000 km/s HI H2H2 H2H2 Bang!!! ~10 7 K Jog & Solomon (1992, ApJ 387, 152) model: IGMintruder

13 SQ-A: CO velocity Lisenfeld et al. (2002, A&A 394, 823) (IRAM 30m) BIMA, Gao & Xu, 2000, ApJL, 542, L82. Molecular gas (CO) in the IGM starburst region (SQ-A): intruder IGM

14 HI maps (VLA C/D) 6600 km/sec 6000 km/sec 5700 km/sec Williams et al. (2002, AJ, 123) total

15 GALEX image (blue: FUV, yellow: NUV) Xu et al. 2005, ApJL 619, L95 star formation rate tidal features (tidal dwarf candidates, or tidally induced star formation regions). size of the 7318b UV disk: ~80 kpc SQ-tip L FUV (total)= L  (ext. corr.) SFR (total)=6.7 M  /yr SFR(SQ-A)=1.3 M  /yr (20% of tot) SFR(N7319)=2.0 M  /yr (tail: ~15%) SFR(N7318b)=3.4 M  /yr FUV contours on R image old tail

16 IRAM interferometer CO (beam=4.3x3.5”) Lisenfeld et al. (2002, A&A 394, 823) IRAM 30m CO (red) on 15um contours Molecular gas in tidal tail: SQ-A SQ-B (tidal dwarf) Lisenfeld et al. (2004, A&A 426, 471)

17 New scenario: (Xu et al ApJL 619, 95) 7319/7318a interaction -> Old theory: (Arp & Kormendy 1972, ApJL 178, 111; Moles et al 1997, ApJL 485, 69): two parallel passes of N7320c (the old intruder) Interaction history (before the intruder): young tail ( yr) old tail ( yr) N7319 N7318a young tail 6620 km/s 6583 km/s 6550 km/s 5900 km/s 105 kpc

18 Toomre & Toomre (1972) equal mass encounter, t = 200 Myr Indeed NGC7319 and 7318b have nearly equal mass: NGC7319: K=10.0 mag NGC7318a: K=10.3 mag FUV contours on a R-band image

19 X-ray (XMM) contours, r-band image R-band contours, XMM image Trinchieri et al. 2005, A&A, in press Connection of N7317 with the group: In a large R band and X-ray halo. X-ray colors: R: keV G: keV B: keV N7317 (E) terminal shock?

20 One word summary: we are just at the beginning of understanding SQ! Remaining Questions: Fate of the IGM gas (~10 10 M  ): falling back to parent galaxies (ULIRG-to-be?), or form new baby galaxies (tidal dwarfs)? reason for the huge (80kpc) UV/HI disk of the intruder: a head-on collision with 7318a (E) ~10 8 yrs ago (‘ring galaxy’ scenario)? will the ‘intruder’ N7318b be eventually captured by the group? secular evolution of galaxies in SQ: were 7318a (E) and 7320c (S0) late type galaxies ~ 1 Gyrs ago? Will N7319 (Sbc) evolve into a early type soon (it has no HI gas in the disk)? How is the type II AGN triggered? Is there any circum-nuclear starburst associated with the type II AGN? Need high resolution (sub-arcsec) IR observations because of the very high extinction (A V ~5). A challenge to simulators: Can this extremely complex system be eventually simulated?