Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.

Slides:



Advertisements
Similar presentations
Current Problems in Dust Formation Theory Takaya Nozawa Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo 2011/11/28.
Advertisements

Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
European Space Astronomy Centre (ESAC) May 23, 2013.
X-ray Properties of Five Galactic SNRs arXiv: Thomas G. Pannuti et al.
From Progenitor to Afterlife Roger Chevalier SN 1987AHST/SINS.
Herschel study of the dust content of Cassiopeia A Ref: arxiv: v1 Oliver Krause PPT.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
銀河進化とダスト 平下 博之 (H. Hirashita) (筑波大学). 1.Importance of Dust in Galaxies 2.Evolution of Dust Amount 3.Importance of Size Distribution 4.Toward Complete.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
I. Origin of the dust emission from Tycho’s SNR II. Mapping observations of [Fe II] lines and dust emission of IC443 by IRSF & AKARI III. Summary AKARI.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
超新星放出ガス中でのダスト形 成と衝撃波中でのダスト破壊 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構( Kavli IPMU ) 2012/09/05 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Supernovae as resources of interstellar dust Takaya Nozawa (IPMU, University of Tokyo) 2011/05/06 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Are Stellar Eruptions a Common Trait of SNe IIn? Baltimore, MD 06/29/11 Ori Fox NPP Fellow NASA Goddard Based on arXiv:
Detecting Cool Dust in Type Ia Supernova Remnant (ranked as priority grade B for ALMA Cycle2) Takaya Nozawa (NAOJ, 理論研究部 ) and Masaomi Tanaka.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
Revealing the mass of dust formed in the ejecta of SNe with ALMA ALMA で探る超新星爆発時におけるダスト形成量 Takaya Nozawa (IPMU, University of Tokyo) 2011/1/31 Collaborators;
Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
On Dust in the Early Universe Takaya Nozawa (IPMU, University of Tokyo) 2010/07/29 Contents: 1. Observations of dust at high-z 2. Formation of dust in.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
(National Astronomical Observatory of Japan)
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
超新星ダストのサイズ分布 2016/02/12 Contents: - Introduction - Dust formation in supernovae (SNe) - Dust destruction by SN reverse shocks - Observations of dust size.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
Dust formation theory in astronomical environments
Core-collapse supernovae as dust producers: what Spitzer is telling us
Mid-infrared Observations of Aged Dusty Supernovae
National Astronomical Observatory of Japan
2014/09/13 高赤方偏移クェーサー母銀河の 星間ダスト進化と減光曲線 (Evolution of interstellar dust and extinction curve in the host galaxies of high-z quasars) 野沢 貴也 (Takaya Nozawa)
Supernovae as sources of interstellar dust
Origin and Nature of Dust Grains in the Early Universe
(IPMU, University of Tokyo)
Consensus and issues on dust formation in supernovae
IIb型超新星爆発時のダスト形成と その放出過程
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
Cold dust in supernovae: the elephant in the room?
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
Dust formation theory in astronomical environments
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Formation of Dust Grains by Supernova Explosion
Dust Synthesis in Supernovae and Reprocessing in Supernova Remnants
Supernovae as sources of dust in the early universe
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Approach to Nucleation in Astronomical Environments
Dust Enrichment by Supernova Explosions
Missing-Dust Problem in SNe: Approach from extremely young SNRs
Takaya Nozawa (IPMU, University of Tokyo)
Supernovae as Sources of Interstellar Dust
(National Astronomical Observatory of Japan)
爆燃Ia型超新星爆発時に おけるダスト形成
Formation of dust and molecules in supernovae
Formation and evolution of dust in hydrogen-poor supernovae
Presentation transcript:

Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa (Hokkaido University), N. Tominaga ( NAOJ ), H. Umeda ( UT ), K. Maeda ( IPMU ), K. Nomoto ( IPMU/UT )

Contents 1. Introduction 2. Cassiopeia A SNR 3. Calculation of evolution of dust in Cas A-like SNR 4. Candidates: Other Galactic SNRs

Supernovae are the important sources of dust? ・ theoretical studies ➔ M dust = M sun by SNe II (Bianchi & Schneider 2007; Nozawa et al. 2007) ・ large amounts of dust ( M sun ) for QSOs at z > 5 (Bertoldi et al. 2003; Priddy et al. 2003; Robson et al. 2004) M sun of dust per SN II are required to form (Morgan & Edmunds 2003; Maiolino et al. 2006; Dwek et al. 2007) SNe are dust factory! 1-1. Introduction QSO SDSS J at z=6.4 (Robson et al. 2004)

○ IR observaitons of dust-forming SNe (~10 SNe) M dust = M sun SN 1987A ➔ M sun (Elcolano et al. 2007) SN 2003gd ➔ 0.02 M sun (Sugerman et al. 2006) ➔ 4x10 -5 M sun (Miekle et al. 2007) SN 2006jc ➔ ~7x10 -5 M sun (Sakon et al. 2008) ➔ 6x10 -6 M sun (Smith et al. 2008), 3x10 -4 M sun (Mattila et al 2008) ○ IR observaitons of nearby young SNRs M dust = M sun (e.g., Hines et al. 2004, Temim et al. 2006; Morton et al. 2007) Theoretical predictions overestimate dust mass? Observations are seeing only hot dust ( > 100K)? 1-2. Introduction

How much and what kind of dust are supplied by SNe? It is necessary to combine theoretical models with IR observational results ・ Observations of ongoing formation of dust in SNe (see Sakon’s poster) nearby young SNRs ・ Theoretical studies of dust formation in the SN ejecta ➔ mass, size, and temperature of dust dust evolution in the shocked gas within SNRs ➔ destruction by sputtering, dynamics, heating ➔ Cas A SNR 1-3. Aim of our study

○ Cas A SNR (SN 1671) age: 337yr (Thorstensen et al. 2001) distance: d=3.4 kpc (Reed et al. 1995) radius: ~150” (~2.5 pc) SN type : Type IIb (M pr =15-25 M sun ) Krause et al. (2008) 2-1. Cassiopeia A SNR

○ Estimated mass of dust in Cas A ・ warm/hot dust (50-300K) (3-7)x10 -3 M sun (IRAS, Dwek et al. 1987) ~7.7x10 -5 M sun (ISO, Arendt et al. 1999) ~6x10 -4 M sun (ISO, Douvion et al. 2001) ~3x10 -3 M sun (Spitzer, Hines et al. 2004) ・ cold dust (~18K) M sun (SCUBA, Dunne et al. 2003) no cold dust (Krause et al. 2004) < 1.5 M sun ( Wilson & Batrla 2005) 2-2. Dust in Cas A SNR

(Rho et al. 2008) 2-3. Latest estimate of dust mass in Cas A ➔ M dust = M sun Emission lines allow us to specify the composition of dust

3-1. Dust formation calculation ○ Type IIb (1993J) model - M pr = 18 M sun M ej = 2.94 M sun M H-env = 0.08 M sun - E 51 = 1 - M( 56 Ni) = 0.07 M sun ○ Dust formation theory - non-steady nucleation and grain growth theory (Nozawa et al. 2003) - onion-like composition - sticking probability; α s = 1

3-2. Results of dust formation calculation average radiusdust mass Low gas density in SN IIb prevents dust grains from growing up to large radius

3-3. Calculation of dust evolution in SNRs ○ Model of calculations Nozawa et al. (2007) ・ ejecta model - hydrodynamic model for dust formation calculation ・ ISM - homogeneous, T gas =10 4 K - n H = 1.0 and 10.0 cm -3 - solar composition of gas ・ treating dust as a test particle - erosion by sputtering - deceleration by gas drag - collsiional heating

3-4. Evolution of dust in Cas A SNR

n=1.0 /cc n=10.0 /cc 3-5. Time evolution of dust mass M dust ~ M sun at 10 5 yrM dust = 0 M sun at 10 5 yr This type of SNe (Type IIb) cannot be the main sources of dust ※ In Type IIp SNe, dust grains of > 0.02 μm are formed and can survive the destruction in SNRs (Nozawa et al. 2007)

・ thermal radiation from dust ➔ temperature of dust ・ equilibrium temperature of dust in SNR is determined by collisional heating with gas and radiative cooling H (a, n, T g )= Λ(a, Q abs, T d ) ➔ thermal emission ・ small-sized dust grains ( < 0.01 μm) ➔ stochastic heating 3-6. Thermal emission from dust in the SNR

3-7. Comparison with Cas A observation (1) Data; Hines et al. (2004) red: with stochastic green: without SH

3-8. Comparison with Cas A observation (2) Data; Hines et al. (2004) red: with stochastic green: without SH

3-8. Comparison with Cas A observation (2) Data; Hines et al. (2004) red: with stochastic green: without SH Dust mass of 0.04 M sun is consistent with mass of dust (~ M sun ) in Cas A derived by Rho et al. (2008)

1) The size of dust formed in the ejecta of H-deficient Type IIb is relatively small because of low gas density of the ejecta 2) Newly formed dust grains cannot survive the reverse shock since their radii are small ( < 0.01 μm) 3) Thermal radiation from dust well reflects the size of dust in SNR through the effect of stochastic heating 4) Model of dust formation and destruction of Type IIb SN for n H =10.0 cm -3 reproduces the observed SED of Cas A ➔ circumstellar / interstellar dust ➔ density structure of circumstellar medium ➔ thermal emission from dust at various positions 3-7. Summary

○ Crab nebula (SN 1054) age: 954 yr distance: d=2.1 kpc (Reed et al. 1995) SN type: Type IIp or IIn? O-Ne-Mg core, M ms =8-10 M sun (Nomoto et al. 1982) dust mass: M dust = M sun (Green et al. 2004) M dust = M sun (Temim et al. 2006) 4-1. Crab SNR Temim et al. (2006)

○ Kes 75 age: ~884 yr (Livngstone et al. 2006) distance: d=19 kpc (Becker & Helfand 1984) d= kpc (Leahy & Tian 2007) SN type: Type Ib or Ic (W-R star, >20 M sun ?) (Chevalier 2005) dust mass: M dust = ~0.08 M sun (Morton et al. 2007) 4-2. Kes 75 SNR Morton et al. (2007)

○ Kepler (SN 1604) age: 404yr (Kepler 1606) distance: d= kpc (Sankrit et al. 2005) SN type: Type II or Type Ia? dust mass: M dust = M sun (Douvion et al. 2001) M dust = M sun (17K) (Morgan et al. 2004) M dust = 5.4x10 -4 M sun (Blair et al. 2007) 4-3. Kepler SNR Morgan et al. (2004) Blair et al. (2007)

4-4. Prospects IR spectroscopic observations of dust in SNRs ・ newly formed dust? and/or circumstellar/interstellar dust? ・ composition of dust ➔ silicate? and/or carbonacious? ・ spectral feature, IR colors ・ forbidden emission lines at IR wavelengths (by comparing with SN nucleosynthesis results) ・ clumpy structure ・ size of dust ➔ properties of the SNe (E exp and M eje ) ・ temperature of dust ➔ gas density ➔ CSM / ISM structure ➔ mass-loss history Dust in SNRs can be powerful probes for understanding the properties and evolution history of progenitor stars!