Thermal stress & cooling of J-Parc neutrino target S. Ueda JHF target monitor R&D group Introduction neutrino target requirement for target Thermal stress.

Slides:



Advertisements
Similar presentations
Proposal for a programme of Neutrino Factory research and development WP-3 The Target The Neutrino Factory Target Lead Author - J R J Bennett CCLRC, RAL.
Advertisements

ATTAINED TEMPERATURE DURING GAS FUELLING AND DEFUELING CYCLES OF COMPRESSED HYDROGEN TANKS FOR FCV.
KT McDonald Target Studies Weekly Meeting July 10, Power Deposition in Graphite Targets of Various Radii K.T. McDonald, J. Back, N. Souchlas July.
Mike Fitton Engineering Analysis Group Design and Computational Fluid Dynamic analysis of the T2K Target Neutrino Beams and Instrumentation 6th September.
Solid Targets for the Neutrino Factory J R J Bennett Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK
for a neutrinos factory
R.Valbuena NBI March 2002 CNGS Decay Pipe Entrance Window Structural and Thermal Analysis A.Benechet, P.Cupial, R.Valbuena CERN-EST-ME.
確率と統計 - 確率2回目 - 平成 18 年 11 月 1 日. 2 今日の内容 1. 確率の復習(再整理) 2. 加法の定理 3. 乗法の定理へのイントロ.
Modelling shock in solid targets Goran Skoro (UKNF Collaboration, University of Sheffield) NuFact 06 UC Irvine, August 24-30, 2006.
9.線形写像.
情報処理A 第10回 Excelの使い方 その3.
5.連立一次方程式.
地球温暖化と 天候の関係性 ~温暖化は天候のせいなのではないのか~. 目的課題 地球温暖化現象 ただの気象条件によるものではないのか? 地球温暖化現象に天候は関係しているの か?
フーリエ級数. 一般的な波はこのように表せる a,b をフーリエ級数とい う 比率:
Excelによる積分.
1 6.低次の行列式とその応用. 2 行列式とは 行列式とは、正方行列の特徴を表す一つのスカ ラーである。すなわち、行列式は正方行列からスカ ラーに写す写像の一種とみなすこともできる。 正方行列 スカラー(実数) の行列に対する行列式を、 次の行列式という。 行列 の行列式を とも表す。 行列式と行列の記号.
複素数.
1 9.線形写像. 2 ここでは、行列の積によって、写像を 定義できることをみていく。 また、行列の積によって定義される写 像の性質を調べていく。
Target & Horns Fluxes were distributed. W/ J-PARC type 2.5 o, 2 o, 3 o. Target cooling evaluation and test Target stress analysis Serious stress analysis.
The JPARC Neutrino Target
二次元、三次元空間の座標表現 点のベクトル表現と行列による変換 点、線、面の数理表現 図形の変換 投影、透視変換
実験5 規則波 C0XXXX 石黒 ○○ C0XXXX 杉浦 ○○ C0XXXX 大杉 ○○ C0XXXX 高柳 ○○ C0XXXX 岡田 ○○ C0XXXX 藤江 ○○ C0XXXX 尾形 ○○ C0XXXX 足立 ○○
Solid Target Options NuFACT’00 S. Childress Solid Target Options The choice of a primary beam target for the neutrino factory, with beam power of
JHF2K neutrino beam line A. K. Ichikawa KEK 2002/7/2 Overview Primary Proton beamline Target Decay Volume Strategy to change peak energy.
KT McDonald MAP Spring Meeting May 30, Target System Concept for a Muon Collider/Neutrino Factory K.T. McDonald Princeton University (May 28, 2014)
Fermilab Neutrino Beamline to DUSEL Mike Martens Fermilab PAC November 3, 2009.
1 cm diameter tungsten target Goran Skoro University of Sheffield.
Summary Why consider a packed bed as a high power target?
NuMI 2 nd High Power Targetry Workshop October 2005 NuMI Target Status and Future Pat Hurh Page 1 NuMI Target Status and Design Study for Proton Driver.
Target mainly by T. Nakadaira, Y. Hayato, A.K.Ichikawa Here, I will report about the present status on target R&D.
Future upgrade of the neutrino beam-line for multi-MW beam 5 th Hyper-Kamiokande open Vancouver July Yuichi Oyama (KEK) (for T2K neutrino.
Reducing shock in the Neutrino Factory target Goran Skoro (University of Sheffield) UKNF Meeting 11 January 2006.
Consideration of Baffle cooling scheme
10,12 Be におけるモノポール遷移 Makoto Ito 1 and K. Ikeda 2 1 Department of Pure and Applied Physics, Kansai University I. 導入:研究の大域的目的とこれまでの研究成果 II. 今回の目的:モノポール遷移への興味.
XFEL-INJ1/2 DUMPS Remarks / Requirements, Injector Beam Dynamic Review Meeting, DESY, Mon. 23. October 2006 ‹#› XFEL - INJ 1/2.
Calculation of Beam loss on foil septa C. Pai Brookhaven National Laboratory Collider-Accelerator Department
Horn –current design  H 0.46  H 0.48  H Weight : ????
UKNF 12 January 2005 Target Studies J R J Bennett RAL.
Heat flow measurement in shallow seas through long-term temperature monitoring Hamamoto Hideki (Earthquake Research Institute,Univ. of Tokyo) Yamano Makoto.
COMET Target Design (COherent Muon to Electron Transition) Satoshi MIHARA.
The CNGS Target Station By L.Bruno, S.Péraire, P.Sala SL/BT Targets & Dumps Section.
Investigation of a “Pencil Shaped” Solid Target Peter Loveridge, Mike Fitton, Ottone Caretta High Power Targets Group Rutherford Appleton Laboratory, UK.
21 Sep 2006 Kentaro MIKI for the PHENIX collaboration University of Tsukuba The Physical Society of Japan 62th Annual Meeting RHIC-PHENIX 実験における高横運動量領域での.
Application of LES to CFD simulation of Diesel combustion 3604A058-2 Fumio KUWABARA.
1 Injection tuning of ATF Design acceptance of the ATF-DR Emittance(x,y)3x10 -3 m Timing +/-350ps dE/E+/-1.5% To supply stable beams to ATF2, the injector.
J-PARC ハイパー核実験での ビーム Tracking Detector 高橋俊行( KEK ) J-PARC 施設の概要 実験方法 考えうる検出器 0.5mm spacing MWPC Silicon Strip Detector まとめ.
HLab meeting 5/22/07 K. Shirotori. SP0 Beam decay background veto SP0 :  - from K - →  - +  0 Background  - is vetoed by detecting  rays from the.
J-PARC neutrino experiment Target Specification Graphite or Carbon-Carbon composite cylindrical bar : length 900mm, diameter 25~30mm The bar may be divided.
Parameters of the NF Target Proton Beam pulsed10-50 Hz pulse length1-2  s energy 2-30 GeV average power ~4 MW Target (not a stopping target) mean power.
Russian Research Center” Kurchatov Institute” Shock wave propagation near 450 GeV and 7 TeV proton beams in LHC collimator materials Alexander Ryazanov.
F.Staufenbiel / EuCARD 2 / Heat load and stress studies of the ILC collimator G. Moortgat-Pick 1;2 S. Riemann 2, F. Staufenbiel 2, A. Ushakov.
A Simulator for the LWA Masaya Kuniyoshi (UNM). Outline 1.Station Beam Model 2.Asymmetry Station Beam 3.Station Beam Error 4.Summary.
Simulation of heat load at JHF decay pipe and beam dump KEK Yoshinari Hayato.
Observation of surface morphology on the cleaved (110) face of GaAs layer. MBE 成長後の Annealing 処理に よって、 cleaved-edge growth 法で 成長させた GaAlAs の (110) 面上 に原子スケールで、平らな面を.
Bootstrapping 2014/4/13 R basic 3 Ryusuke Murakami.
Target Proposal Feb. 15, 2000 S. Childress Target Proposal Considerations: –For low z target, much less power is deposited in the target for the same pion.
High Power Target Experience with T2K Chris Densham T2K Beamline Collaboration including RAL / KEK / Kyoto.
Target R&D for the J-PARC neutrino experiment (II) Yoshinari Hayato (KEK/IPNS) for the J-PARC target R&D group.
Design for a 2 MW graphite target for a neutrino beam Jim Hylen Accelerator Physics and Technology Workshop for Project X November 12-13, 2007.
T2K Target status PASI Meeting Fermilab 11 th November Chris Densham STFC Rutherford Appleton Laboratory On behalf of the T2K beam collaboration.
Target work plan for LBNO study Chris Densham STFC Rutherford Appleton Laboratory.
Irradiated T2K Ti alloy materials test plans
New nTOF target: Design Issues
Investigation of laser energy absorption by ablation plasmas
Beam Window Studies for Superbeams
Target R&D for JHF neutrino
Parameters of the NF Target
ガラス電極pH計での不確かさについて 中村 進 (NMIJ/AIST, Japan)
EUROnu Beam Window Studies Stress and Cooling Analysis
Presentation transcript:

Thermal stress & cooling of J-Parc neutrino target S. Ueda JHF target monitor R&D group Introduction neutrino target requirement for target Thermal stress Cooling heat transfer coefficient cooling test summary

2 Introduction Beam 50 [GeV] proton, 0.75 [MW] 3×10 14 [protons / spill], 5 [μsec/spill] 3.3 [sec](between spills), 8 [bunch/spill] Material graphite or C/C composite Because of; high melting point(~3700 ℃ ) thermal resistance Cooling water cooling Shape cylindrical 900mm long(2λint) & 12~15mm radius beam 900mm Cooling pipe from one-side horn Target

3 Requirements for target More pion Thermal shock resistance Possibility to cool The effects of target radius  Larger radius pion yield decreases  Smaller radius Temperature increases more thermal stress surface area decreases difficult to cool The optimization is needed Pion yield Target Size(mm) [K] Temperature rise at center

4 Energy deposit heat distribution in 1pulse (15mm radius) 20%difference J/g degree Z R cal. w/ MARS [J/g] r=13mm r=15mm

5 Thermal stress Stress estimation Stress estimation quasi-static stress (non-uniform heating) dynamical stress (rapid heating) Material fatigue Material fatigue after repeating stress(10 6 times), tensile strength become 0.8 (IG-110). E :Young ’ s modulus ν:Poisson ratio α:linear expansion coeff. T 0 :Temperature at center

6 Material properties Ⅰ Temperature dependence Temperature dependence specific heat tensile strength max temp. rise(G347) r=13mm 234.2[K] almost the same r=15mm 200.6[K] [J/g]

7 Material properties Ⅱ thermal expansion coeff.(G347) Young’s modulus(G347) temperature dependence exists these effects should be taken into account [1/K] [Gpa ]

8 Safety factor Definition Definition safety factor = ( tensile strength / σ eq ) Result Result (include fatigue 、 material properties) Type tensile σ eq σ eq strength[Mpa]r=13[MPa] r=15[MPa] Toyo Tanso IG (3.3)7.48 (4.0) Tokai Carbon G (3.9)5.55 (4.5) () is safety factor These graphite have sufficient safety factor

9 Cooling Requirement Requirement  cool down 60kJ in 3.3 sec  keep T surf under 100 ℃ is a key parameter! α is a key parameter! Q = α S(T surf - T water ) = α SΔ T T surf = T water + ΔT T water ← ΔT ← α α depends cooling test α need to be measured Q : heat transfer [kW] S : surface area [m 2 ] Tsurf : temp. at surface[K] Twater : temp. of water [K] α : heat transfer coeff. [kW/m 2 /K] target water T water T surf Q

10 Analytical estimation of ΔT ΔT(t) ΔT(t) depends on ・ initial condition : T rise (r) ・ heat transfer coeff : α α=6α=6 Temp. rise at 5μsec [K] Averaged in z direction ΔTΔT

11 Water temperature T water (r) T water (r) (at Z=900mm) T surf = T water + ΔT to estimate maximum T surf, max of T water is necessary T water has max at Z=900mm heat transfer ∝ ΔT T water takes maximum value at 0.8sec Water temp. α=6 20[l/min] beam in [℃][℃] target water Z=0mm Z=900mm beam Q

12 α & flow rate Calculation result T surf = ΔT + T water more water flow rate water temp rise : smaller acceptable α : lower Relation between α & flow rate satisfy T surf <100 ℃ Flow rate& α 15 [l/min] -> more than 6.5 [kW/m 2 /K] 20 [l/min]->more than 5.8 [kW/m 2 /K] Is needed [℃][℃] allowable

13 Cooling test Purpose measure the heat transfer coeff. How heat up the graphite with DC current, and cool by flowing water Measurement temperatures,water flow rate,current α : heat transfer coeff. [kW/m 2 /K] Q :heat transfer [W] T surf :surface temperature [K] T water :water temperature [K] S :surface area [m 2 ]

14 Setup of cooling test Current ~ 1.2kA(20kW) Water flow 8.9, 12[l/min] Target radius 15mm Current feeds DC current thermocouples 900mm target water

15 Cooling test results α increase with surface temperature & water flow rate compared with the α condition extrapolate with theoretical formula [℃][℃] [kW/m 2 K] 6.5[kW/m 2 /K] at 15[l/min]

16 Comparison w/ theoretical formula Theoretical formula Re(T) :Reynolds number Pr(T) :Prandtl number λ(T) : Thermal conductivity d : equivalent diameter Result Data and calculation seems to agree at 20 [l/min], α expected to satisfies the condition !

17 Summary Thermal stress max stress safety factor r=15mm IG [MPa]4.0 G [MPa]4.5 cooling calc. relations between α & flow rate r=15mm 15[l/min],6.5[kW/m 2 /K] 20[l/min],5.8[kW/m 2 /K] cooling test possible to cool at more than 20[l/min]

18 Schedule Next cooling test with more flow rate We plan to test with 20 [l/min] this month

19 reference1 off-axis-beam ⇒ high intensity narrow energy band Horns Super-K. Target Decay Pipe 

20 reference2

21 reference 3

22 reference 4  ΔT(r) time development When the target surface is cooled (at r=R)with α, temperature difference between Tsurf and Twater ( at r,time=τ) : is, ただし λ:heat conductivity a:thermal diffusivity

23 reference 5 ΔT[K]

24 reference6

25 参考6 熱量と中心温度から表面温度 長さ方向に熱の移動がないと仮定した場合、 ターゲット内部では一様発熱。 r Q(r) λ : 熱伝導度 c : 比熱 q : 単位体積当たりの発熱量 R : 半径

26 冷却試験 data data POWER :4.2kW~19.4kW flow rate :8.9,12[l/min] each data points are averaged

27 JPARC neutrino beamline Proton beam kinetic energy # of protons / pulse Beam power Bunch structure Bunch length (full width) Bunch spacing Spill width Cycle 50GeV 3.3x kW 8 bunches 58ns 598ns ~5  s 3.53sec Primary Proton beam line Extraction point Target Target station muon monitor beam dump Near neutrino detector Decay volume

28 J-PARC ニュートリノ 実験 目的 ν μ → ν e ν μ disappearance CPV in lepton sector 十分な統計が必要 J-PARCK2K Energy (GeV)5012 Int. (10 12 ppp)3306 beam 間隔 (sec) Power (kW) ターゲット π+π+ μ+μ+ νμνμ ホーン decay pipe proton

29 [Gpa ]

30 Water flow 1 900mm target water

31 Water flow 2 s 900mm target water

32 S 電極 熱電対 91cm 4cm5cm 4.7cm