The LUNA experiment: direct measurement of thermonuclear cross sections of astrophysical interest Alessandra Guglielmetti Universita’ degli Studi di Milano.

Slides:



Advertisements
Similar presentations
 s(E) = S(E) e–2ph E-1 s Laboratory for Underground
Advertisements

Carlo Broggini, INFN-Padova Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 2 cm m m m m Astrophysical Factor Gamow Factor Reaction Rate(star)
Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 Reaction Rate(star) (E) (E) dE Gamow Peak Maxwell Boltzmann Extrap.Meas. LUNA results Men in.
LUNALUNA Nucleosintesi stellare (E star ) (E) = S(E)/E e –2 2 cm m m m m Fattore astrofisico Interazioni(stella) (E) (E) dE Picco di Gamow Maxwell Boltzmann.
NuPECC - Milan Present and future of Laboratory Underground Nuclear Astrophysics Alba Formicola - Status of the D(, ) 6 Li measurement -Status of.
Methods to directly measure non-resonant stellar reaction rates
Underground Measurement of the 17O+p Reactions
15 N Zone 8 Zone 1 Zone 28 p Zone 1 Zone O Zone 1 Zone 4 Zone 8 Zone N 16 O p Reaction rates are used to determine relative abundance of elements.
1 Some key problems and key reactions in Nuclear Astrophysics Main issues: BBN: was the universe always the same? What’s in the core of Sun and other MS.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Text optional: Institutsname Prof. Dr. Hans Mustermann Mitglied der Leibniz-Gemeinschaft Direct measurement of the d( α, γ ) 6 Li cross-section.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
New methods to measure the cross sections of 12 C+ 12 C fusion reaction Xiao Fang Department of Physics University of Notre Dame.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Mariano Carmona Gallardo Grupo de Física Nuclear Experimental Instituto de Estructura de la Materia CSIC-Madrid O. Tengblad 1, B.S. Nara Singh 2, M. Hass.
Gianluca Imbriani Physics Department of University of Naples Federico II, Italian National Institute of Nuclear Physics (INFN) and Joint Institute of Nuclear.
Searching for the Low-Energy Resonances in the 12 C( 12 C,n) 23 Mg Reaction Cross Section Relevant for S-Process Nucleosynthesis Brian Bucher University.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
I. Introductory remarks and present status II. Laboratory experiments and astrophysics III. Future options scenarios status and challenges new developments.
ESF Workshop on The future of stable beams in Nuclear Astrophysics, Athens, Dec , 2007 Stable ion beams for nuclear astrophysics: Where do we stand.
Electron screening: can metals simulate plasmas? Marialuisa Aliotta School of Physics - University of Edinburgh International Workshop XXXIV on Gross Properties.
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
Determination of activity of 51 Cr source on gamma radiation measurements V.V.Gorbachev, V.N.Gavrin, T.V.Ibragimova, A.V.Kalikhov, Yu.M.Malyshkin,A.A.Shikhin.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Measurement of 7 Be(n,  ) and 7 Be(n,p) cross sections for the Cosmological Li problem in Addendum to CERN-INTC /INTC-P-417 Spokepersons:
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
Background Subtraction in Next Generation 0  Experiments Double-Beta Decay Challenges in 0  Decay Detection Benjamin Spaun Whitworth College Advisors:
Experimental Nuclear Astrophysics: Key aspects & Open problems Marialuisa Aliotta School of Physics University of Edinburgh Nuclear Physics Autumn Retreat.
Santa Tecla, 2-9 October 2005Marita Mosconi,FZK1 Re/Os cosmochronometer: measurements of relevant Os cross sections Marita Mosconi 1, Alberto Mengoni 2,
1/38 Laboratory Underground Nuclear Astrophysics The D( 4 He,  ) 6 Li reaction at LUNA and the Big Bang Nucleosynthesis Carlo Gustavino For the LUNA collaboration.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture measurements for the weak s-process Michael Heil Hirschegg workshop, January.
L’esperimento LUNA- CdS MI luglio 2012 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics.
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory NPA5 April 7, 2011 Upper limit on the molecular resonance strengths in the.
NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA D. Trezzi (for the LUNA collaboration) Università degli Studi di Milano | INFN – New Vistas in Low-Energy.
The LUNA experiment at Gran Sasso Laboratory: studying stars by going underground Alessandra Guglielmetti Università degli Studi di Milano and INFN, Milano,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Report (2) on JPARC/MLF-12B025 Gd(n,  ) experiment TIT, Jan.13, 2014 For MLF-12B025 Collaboration (Okayama and JAEA): Outline 1.Motivation.
Bubble Chamber A novel technique for measuring thermonuclear rates at low energies Rashi TalwarAPS April Meeting 2016.
Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Hydrogen-burning reactions at astrophysically relevant energies Laboratory Underground Nuclear.
 s s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Nuclear Astrophysics at LUNA and the Big Bang Nucleosynthesis
L’esperimento LUNA- CdS MI giugno 2013
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI luglio 2017
Prompt Gamma Activation Analysis on 76Ge
Why going underground g-background
for the LNL-Ganil collaboration
Zs. Fülöp ATOMKI, Debrecen, Hungary
The scientific program for the first five years of LUNA-MV
the s process: messages from stellar He burning
Stato dell'esperimento LUNA
Laboratory for Underground Nuclear Astrophysics
status and perspectives
Alessandra Guglielmetti Universita’ degli Studi di Milano and
Underground Astrophysics at Surface Facilities: the Atomki case
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
The D(4He,)6Li reaction at LUNA and the Big Bang Nucleosynthesis
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI giugno 2015
 s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
BBN, neutrinos and Nuclear Astrophysics
 s(E) = S(E) e–2ph E-1 s Nuclear Burning in Stars s(Estar) s
Elastic alpha scattering experiments
Presentation transcript:

The LUNA experiment: direct measurement of thermonuclear cross sections of astrophysical interest Alessandra Guglielmetti Universita’ degli Studi di Milano and INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics Outline: -Nuclear Fusion reactions in stars -Why going underground -The Luna Experiment: most important results - On-going measurements and future perspective

p + p  d + e + + e d + p  3 He +  3 He + 3 He   + 2p 3 He + 4 He  7 Be +  7 Be+e -  7 Li +  + e 7 Be + p  8 B +  7 Li + p   +  8 B  2  + e + + e 84.7 %13.8 % % 0.02 % pp chain Produces energy for most of the life of the stars 4p  4 He + 2e e MeV Hydrogen burning

Nuclear reactions in stars Sun: T= K kT = 1 keV<< E C (0.5-2 MeV) 3 He( 3 He,2p) 4 He 21 keV d(p,  ) 3 He 6 keV 14 N(p,  ) 15 O 27 keV Reaction E 0 3 He( 4 He,  ) 7 Be 22 keV

Cross section and astrophysical S factor Gamow energy region Astrophysical factor Cross section of the order of pb! Gamow factor E G S factor can be extrapolated to zero energy but if resonances are present?

Sub-Thr resonance Extrapol. Mesurements Narrow resonance Non resonant process Tail of a broad resonance Danger in extrapolations!

Sun Luminosity (irradiated energy per time) = 2 ·10 39 MeV/s Q-value (energy for each reaction) = MeV  Reaction rate = s -1 Laboratory R lab =  ·  ·I p ·  ·N av /A  ~ 10 % I P ~ mA  ~  g/cm 2 pb <  < nb event/month < R lab < event/day  Underground Laboratory

R lab > B cosm + B env + B beam induced Environmental radioactivity has to be considered underground  shielding Beam induced bck from impurities in beam & targets  high purity Cross section measurement requirements 3MeV < E  < 8MeV: 0.5 Counts/s 0.5 Counts/s 3MeV < E  < 8MeV Counts/s GOING UNDERGROUND HpGe

LUNA site LUNA 1 ( ) 50 kV LUNA 2 (2000  …) 400 kV Laboratory for Underground Nuclear Astrophysics Nuclear Astrophysics RadiationLNGS/surface Muons Neutrons LNGS (shielding  4000 m w.e.) LUNA MV 2012 ?

400 kV Accelerator : E beam  50 – 400 keV I max  500  A protons I max  250  A alphas Energy spread  70 eV Long term stability  5eV/h Laboratory for Underground Nuclear Astrophysics

CNO Cycle T> K M>1.1 Solar masses 14 N(p,  ) 15 O is the slowest reaction and determines the rate of energy production Its cross section influences: CNO neutrino flux  solar metallicity Globular cluster age 12 C 13 N p,  -- 13 C 14 N p,  15 O ++ 15 N p,  p, 

S 14,1 /5 S 14,1 x5 Standard CF88 Globular cluster age

factor 10 ! Angulo Schröder 14 N(p,  ) 15 O: the bottleneck of the CNO cycleTransition(MeV) Schröder et al. (Nucl.Phys.A 1987) Angulo et al. Angulo et al. (Nucl.Phys.A 2001) RC / ± ± 0.06 S(0) [kev-b] 3.20 ± ± 0.20 factor 20 !

High resolution measurement (2004) Solid target + HPGe detector  single γ transitions  Energy range keV  summing had to be considered Gas target+ BGO detector  high efficiency  total cross section  Energy range keV High efficiency measurement (2006) CNO neutrino flux decreases of a factor  2 Globular Cluster age increases of 0.7 – 1 Gyr S 0 (LUNA) = 1.61 ± 0.08 keV b

3 He( 4 He,  ) 7 Be John Bahcall e M. H. Pinsonneault, astro- ph/ v1, 2004: The rate of the reaction 3 He( 4 He,  ) 7 Be is the largest nuclear physics contributor to the uncertainties in the solar model predictions of the neutrino fluxes in the p-p chain. In the past 15 years, no one has remeasured this rate; it should be the highest priority for nuclear astrophysicists.“  ( 8 B) ~ (1+  S 11 ) (1+  S 33 ) (1+  S 34 ) 0.85 (1+  S 17 ) 1.0 (1+  S e7 ) -1.0 (1+  S 1,14 ) where fractional uncertainty  S 11   S 11 /S 11 (0)

E  = 478 keV 3 He( ,  ) 7 Be(e, ) 7 Li*(  ) 7 Li E  =1586 keV + E cm (DC  0); E  = 1157 keV + E cm (DC  429) E  = 429 keV Average  prompt Average activa. Prompt  Activation The two techniques show a 9% discrepancy

 3 He recirculating gas target p=0.7mbar  Si-monitor for target density measurement (beam heating effect)  Collimated HPGe detector to collect  ray at 55   0.3 m 3 Pb-Cu shield suppression five orders of magnitude below 2MeV  Removable calorimeter cap for offline 7 Be counting Luna measurement: both techniques and accuracy of 4-5%

Results Uncertainty due to S 34 on neutrinos flux: Φ( 8 B) 7.5%  4.3% Φ( 7 Be) 8%  4.5% B.N. Singh2004 LUNA data Prompt activation in Solar fusion cross sections II: arXiv: v3 based on LUNA and successive measurements: S 34 = 0.56 ± 0.02 (exp) ± 0.02 (model) keV b S 34 (LUNA) =0.567±0.018±0.004 keV b

reactionQ-value (MeV) Gamow energy (keV) Lowest meas. Energy (keV) LUNA limit 15 N(p,  ) 16 O O(p,  ) 18 F O(p,  ) 19 F Na(p,  ) 24 Mg Ne(p,  ) 23 Na D( ,  ) 6 Li (direct) 50(indirect) 50 CNO cycle Ne-Na cycle BBN In progress completed! LUNA present program to be completed presumably by 2014

He 3 4 Be 7 Li 7 H D p n Li n  p + e p + n  D +  3.D + p  3 He +  4.D + D  3 He + n 5.D + D  3 H + p 6. 3 H + D  4 He + n 7. 3 H + 4 H  7 Li +  8. 3 He + n  3 H + p 9. 3 He + D  4 He + p He + 4 He  7 Be +  Li + p  4 He + 4 He Be + n  7 Li + p He + D  6 Li +  BBN: production of the lightest elements (D, 3 He, 4 He, 7 Li, 6 Li) in the first minutes after the Big Bang Apart from 4 He, uncertainties are dominated by systematic errors in the nuclear cross sections

The 6 Li case Constant amount in stars of different metallicity (  age) 2-3 orders of magnitude higher than predicted with the BBN network (NACRE) The primordial abundance is determined by: 2 H( ,  ) 6 Li producing almost all the 6 Li 6 Li(p,  ) 3 He destroying 6 Li  well known 6 Li 7 Li BBN prediction

[F. Hammache et al., Phys. Rev. C 82, (2010)] Direct measurements:  Robertson et al. E > 1 MeV  Mohr et al. around the 0.7 MeV resonance Indirect measurements: Hammache et al. upper limits with high energy Coulomb break-up At LUNA direct measurements at the energies of astrophysical interest LUNA BBN energy region MeV Available data

The beam-induced background d d n n 3 He α α α α d d d d - neutron background generated by d( ,  )d Rutherford scattering followed by d(d,n) 3 He reactions -> (n,n’γ) reactions on surrounding materials (Pb, Ge, Cu) -> much higher γ-ray background in the RoI for the d(α,γ) 6 Li DC transition (~1.6 MeV)

Reduced gas volume: pipe to minimize the path of scattered 2 H and hence to minimize the d(d,n) 3 He reaction yield - HPGe detector in close geometry: larger detection efficiency and improved sygnal-to-noise ratio - Silicon detectors to measure 2 H( 2 H,p) 3 H Experimental set-up Germanium Detector Silicon Detectors to detect D(D,p) 3 H protons Steel pipe to minimize D+D reactions yield

LUNA measurement (preliminary) still running to double the acquired statistics 230 h at 400 keV, 285 h at 280 keV

LUNA MV Project April 2007: a Letter of Intent (LoI) was presented to the LNGS Scientific Committee (SC) containing key reactions of the He burning and neutron sources for the s-process: 12 C( ,  ) 16 O 13 C( ,n) 16 O 22 Ne( ,n) 25 Mg ( ,  ) reactions on 14,15 N and 18 O These reactions are relevant at higher temperatures (larger energies) than reactions belonging to the hydrogen- burning studied so far at LUNA Higher energy machine  3.5 MV single ended positive ion accelerator

Possible location at the "B node" of a 3.5 MV single-ended positive ion accelerator

In a very low background environment such as LNGS, it is mandatory not to increase the neutron flux above its average value Study of the LUNA-MV neutron shielding by Monte Carlo simulations α beam intensity: 200 µA Target: 13 C, at/cm 2 (99% 13 C enriched) Beam energy(lab) ≤ 0.8 MeV α beam intensity: 200 µA Target: 22 Ne, at/cm 2 Beam energy(lab) ≤ 1.0 MeV from α beam intensity: 200 µA Target: 13 C, at/cm 2 ( 13 C/ 12 C = ) Beam energy(lab) ≤ 3.5 MeV Maximum neutron production rate : 2000 n/s Maximum neutron energy (lab) : 5.6 MeV

Geant4 simulations for neutron fluxes just outside the experimental hall and on the internal rock walls

First results

Round Table "LUNA-MV at LNGS" 10th-11th February scientists from Europe, USA and Asia: Status of similar projects in Europe and USA Description of the LUNA MV project (site, machine, shielding,...) Astrophysical importance of the envisaged reactions Experimental open problems Discussion Two documents: A) Proceedings B) Brief description of the project and list of "Working packages" to be distributed for adhesions (Aliotta, Fraile, Fulop, Guglielmetti)

Next-generation underground laboratory for Nuclear Astrophysics Executive summary This document originates from discussions held at the LUNA MV Roundtable Meeting that took place at Gran Sasso on February It serves as a call to the European Nuclear Astrophysics community for a wider collaboration in support of the next-generation underground laboratory. To state your interest to contribute to any of the Work Packages, please add your name, contact details, and WP number under International Collaboration. WP1: Accelerator + ion source WP2: Gamma detectors WP3: Neutron detectors WP5: Solid targets WP6: Gas target WP7: Simulations WP8: Stellar model calculations

THE LUNA COLLABORATION Laboratori Nazionali del Gran Sasso A.Formicola, M.Junker Helmoltz-Zentrum Dresden-Rossendorf, Germany M. Anders, D. Bemmerer, Z.Elekes INFN, Padova, Italy C. Broggini, A. Caciolli, R.Menegazzo, C. Rossi Alvarez INFN, Roma 1, Italy C. Gustavino Institute of Nuclear Research (ATOMKI), Debrecen, Hungary Zs.Fülöp, Gy. Gyurky, E.Somorjai, T. Szucs Osservatorio Astronomico di Collurania, Teramo, and INFN, Napoli, Italy O. Straniero Ruhr-Universität Bochum, Bochum, Germany C.Rolfs, F.Strieder, H.P.Trautvetter Seconda Università di Napoli, Caserta, and INFN, Napoli, Italy F.Terrasi Università di Genova and INFN, Genova, Italy P.Corvisiero, P.Prati Università di Milano and INFN, Milano, Italy M.Campeggio, A.Guglielmetti, D. Trezzi Università di Napoli ''Federico II'', and INFN, Napoli, Italy A.di Leva, G.Imbriani, V.Roca Università di Torino and INFN, Torino, Italy G.Gervino University of Edinburgh M. Aliotta and D. Scott