Secondary Emission Ionization Calorimetry Detectors

Slides:



Advertisements
Similar presentations
Atsuhiko Ochi Kobe University 4/10/ th RD51 collaboration meeting.
Advertisements

Fast shower maximum detector based on MCP-PMT Anatoly Ronzhin, Fermilab, AEM, March 10, 2014 Team: Sergey Los, Erik Ramberg, Fermilab Artur Apresyan, Si.
Status of DHCAL Slice Test Data Analysis Lei Xia ANL-HEP All results preliminary.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
W. Clarida, HCAL Meeting, Fermilab Oct. 06 Quartz Plate Calorimeter Prototype Geant4 Simulation Progress W. Clarida The University of Iowa.
Fiberless Coupled Tiles for a High Granularity Scintillator-SiPM Calorimeter Rick Salcido Northern Illinois University November 14, 2009 Prairie Section.
New & Old Calorimetry Technologies with New Tools for LC Y.Onel, University of Iowa D.R.Winn, Fairfield University ALCPG - Victoria Linear Collider Workshop.
Investigation of the properties of diamond radiation detectors
New Calorimeter Technologies for NLC (a) Secondary Emission Calorimeter Sensors (b) Cerenkov Compensated Precision Calorimetry Y.Onel, University of Iowa.
July 2003American Linear Collider Workshop Cornell U. Development of GEM-based Digital Hadron Calorimetry Andy White U.Texas at Arlington (for J.Yu, J.Li,
1 Perspectives of the anodic aluminium oxide Presented by G.Drobychev on behalf of Savoie University-Belarus State University Collaboration 15/06/2006.
1 Tianchi Zhao University of Washington Concept of an Active Absorber Calorimeter A Summary of LCRD 2006 Proposal A Calorimeter Based on Scintillator and.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
Status of PNPI R&D for choice of the MUCH tracking base detector (this work is supported by INTAS) ■ Introduction ■ MICROMEGAS ■ GEM ■ MICROMEGAS+GEM ■
Proposal for Generic R&D on EIC Detectors Yasar Onel University of Iowa.
Calorimetry: a new design 2004/Sep/15 K. Kawagoe / Kobe-U.
Beam test results of Tile/fiber EM calorimeter and Simulator construction status 2005/03/05 Detector Niigata University ONO Hiroaki contents.
R&D on W-SciFi Calorimeters for EIC at Brookhaven E.Kistenev, S.Stoll, A.Sukhanov, C.Woody PHENIX Group E.Aschenauer and S.Fazio Spin and EIC Group Physics.
Shower Containment and the Size of a Test Calorimeter Adam Para, September 6, 2006.
Study of Sampling Fractions Shin-Shan Yu, A P, Hans Wenzel, October 18, 2006.
Muon Detector Jiawen ZHANG Introduction The Detector Choices Simulation The structure and detector design The Expected performance Schedule.
SiD Concept – R&D Needs Andy White U. Texas at Arlington SiD Concept Meeting LCWS06 Bangalore, India March 11, 2006.
Light Calibration System (LCS) Temperature & Voltage Dependence Option 2: Optical system Option 2: LED driver Calibration of the Hadronic Calorimeter Prototype.
Tests of a Digital Hadron Calorimeter José Repond Argonne National Laboratory CALICE Collaboration Meeting March 10 – 12, 2010 University of Texas at Arlington.
Tungsten as HCal-material for a LC at multi-TeV energies CALICE AHCAL Meeting, DESY 17 July 2009 Christian Grefe for the Linear Collider Detector Group.
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
Atsuhiko Ochi Kobe University
V.Dzhordzhadze1 Nosecone Calorimeter Simulation Vasily Dzhordzhadze University of Tennessee Muon Physics and Forward Upgrades Workshop Santa Fe, June 22,
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
Atomic Layer Deposition for Microchannel Plates Jeffrey Elam Argonne National Laboratory September 24, 2009.
LHC The Large Hadron Collider (LHC) is an accelerator with 27 km circumference. Being built on the France- Switzerland border west of Geneva. It will start.
Digital Calorimetry using GEM technology Andy White for UTA group (A. Brandt, K. De, S. Habib, V. Kaushik, J. Li, M. Sosebee, Jae Yu) U.C. Santa Cruz 6/28/2002.
IEEE NSS 2007 D.Kramer 1 Very High Radiation Detector for the LHC BLM System based on Secondary Electron Emission Daniel Kramer, Eva Barbara.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy1 Studies on High QE PMT Tadashi Nomura (Kyoto U.) Contents –Motivation –Performance.
Quartz Plates R&D Status By F. Duru, S. Ayan, U. Akgun, J. Olson, Y. Onel The University Of Iowa V.Podrasky, C. Sanzeni, D.R.Winn Fairfield University.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
Update on GEM-based Calorimetry for the Linear Collider A.White 1/11/03 (for J.Yu, J.Li, M.Sosebee, S.Habib, V.Kaushik)
A Prototype Diamond Detector for the Compton Polarimeter in Jefferson lab, Hall C Medium Energy Physics Group Amrendra.
PPAC in ZDC for Trigger and Luminosity Edwin Norbeck University of Iowa Luminosity Workshop November 5, 2004.
1 Plannar Active Absorber Calorimeter Adam Para, Niki Saoulidou, Hans Wenzel, Shin-Shan Yu Fermialb Tianchi Zhao University of Washington ACFA Meeting.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
DHCAL Jan Blaha R&D is in framework of the CALICE collaboration CLIC08 Workshop CERN, 14 – 17 October 2008.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
Small, fast, low-pressure gas detector E. Norbeck, J. E. Olson, and Y. Onel University of Iowa For DNP04 at Chicago October 2004.
Energy Reconstruction in the CALICE Fe-AHCal in Analog and Digital Mode Fe-AHCal testbeam CERN 2007 Coralie Neubüser CALICE Collaboration meeting Argonne,
W Prototype Simulations Linear Collider Physics & Detector Meeting December 15, 2009 Christian Grefe CERN, Bonn University.
FEE for Muon System (Range System) Status & Plans G.Alexeev on behalf of Dubna group Turin, 16 June, 2009.
PPAC Jonathan Olson University of Iowa Thesis Defense 8 April 2005.
MICRO-STRIP METAL DETECTOR FOR BEAM DIAGNOSTICS PRINCIPLE OF OPERATION Passing through metal strips a beam of charged particles or synchrotron radiation.
Calorimetry R&D for Future Lepton Colliders Y.Onel University of Iowa March 8,
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
I nstrumentation of the F orward R egion Collaboration High precision design ECFA - Durham2004 University of Colorado AGH University, Cracow I nstitute.
SHIP calorimeters at test beam I. KorolkoFebruary 2016.
PPAC Jonathan Olson University of Iowa HCAL November 11-13, 2004.
-Stephan AUNE- RD51 BARI. Saclay MPGD workshop R&D 09/10/20101 Saclay workshop R&D for new Bulk structure.
Thick-GEM sampling element for DHCAL: First beam tests & more
Scintillation Detectors in High Energy Physics
The ATLAS Zero Degree Calorimeter Brookhaven National Laboratory, USA
Development of Large-Area Photo-detectors:
Hadronic Shower Structure in WHCAL Prototype
Digital Calorimetry using GEM technology Andy White for UTA group
HE Calorimeter Upgrade Studies
ILC Detector Activities in Korea
HCAL Modules -First Ideas
R&D for HCAL detectors at SLHC
LC Calorimeter Testbeam Requirements
A DLC μRWELL with 2-D Readout
Presentation transcript:

Secondary Emission Ionization Calorimetry Detectors David R Winn for Fairfield/Iowa/Mississippi

Secondary Emission Ionization Calorimeters Secondary Emission: Rad-Hard, Fast Metal-Oxide/Cs Dynodes survive > 500 GigaRad Signal from SE surface(s) in Hadron Showers: SE yield  Scales with particle momentum ~dE/dx e-: 3 <  <100, per 0.1 <e-<100 KeV (material depnt) ~1.05 -1.1 or 0.05-0.1 SE e- per MIP NB: This is a lower limit on hadron shower SE signals 4-6 MIP equiv per GeV sampling calorimeters ~50 SE e- per 100 GeV pi shower w/ MIPs alone Achtung! SE e- Must be Amplified!

Signal Generation from e, pi Showers Al2O3,TiO2 ~0.05 e- per MIP. Yet used as beam monitors: Rad Hard! Hadron Showers: Sub-mip Charged particles

High SE Yield Materials Peak Yields~5-10+; Alumina Easy MgO Electrons on MgO Diamond SE Yield Stable in air! Diamond Gain 300 V vs B Doping Level

SE Signal: MIP Equivs in Hadron Calorimeter ~5cm Fe Sampling HCal: ~4-6 mip equiv/GeV The Lower Limit on Signal: 100 GeV Fe Hadron Cal: Minimum of 25-50 SE e- …But need amplifier!

Digital Calorimetry: ~12 hits/GeV ->0.5-1 SEe/GeV (CALICE) B.Bilki et al., 2009 JINST 4 P04006

->800 SEe/GeV GEANT4: Cu, 1cm plates, 10 GeV e incident Electrons counted as cross 1cm “gap” ->800 SEe/GeV (100 events) Showering e energy

Implies ~900 e/GeV Crossing gaps. > 45 SEe/GeV ! GEANT4 e’s in Cu 1 cm absorber Plates Count shower e crossing gaps Number shower e vs e energy 10 GeV e Implies ~900 e/GeV Crossing gaps. > 45 SEe/GeV ! 100 GeV e

~740 Charged Particles/GeV More low E than electron -> ~35-80 SEe/GeV

SE MIP Detector w/ 5 x 107 Gain SE e- Already In Vacuum Use Dynodes To Amplify

Etched Metal Sheet Dynodes SE e Detector Option A: Etched Metal Sheet Dynodes Hamamatsu Slat Dynodes up to 6” now. Can be Scaled. - Chemo-electro machined Metal “Mesh” Dynode Sheets ~1mm thick dynode layer - scale to 500-200 µm HV Vacuum: <10KV/mm -> 500V/0.2 mm ok. Sheets can be up to square meters Pressure + HV insulators: monotonous insulators walls, posts, fibers (glass ceramics oxides) Quasi Channelized: e- confined ->MCP operation Metal cathode directly D1 B -> ~2T, as mesh dynode PMT

5” wide PMT Etched Dynodes

Metal Screen Dynodes: 15D: g~105, Bz~2 T SE e Detector Option B: Metal Screen Dynodes: 15D: g~105, Bz~2 T fine mesh distance between dynodes: 0.9 mm step of the dynode mesh: 13 mm mesh wires diameter: 0.5 mm

SE e Detector Option C: MEMS Mesh Dynodes µMachined Mesh Dynodes Low Cost ~ 30 minute process Channel Width ~200 mm Offset layer layer helical channels Insulator: Si3N4 or SiO2 Confined e- = High B Can be taken to air repeatedly ~ microTorr operation ok

Alternative High-B SE e- Gain Mechanisms: MCP-Like Devices A - El-Mul/A.Breskin Sintered SE MicroSpheres ~20- 100 µm Porous Plate: ~0.5-1 mm thick Gain ~ 106 at 3000 V @ 1G B - Anodic Alumina ~ MCP-like? ~100 nm pores Aspect ratio ~ 50-100:1

Anticipated Performance: SE 12 l Cu Hadron Calorimeter Minimum Signal: muon MIP ~0.1 SE e- per module w/ g > 100,000 (delta rays~SE peak) ~ 40 Samples -> MIP Signal ~ 4 SE electrons/MIP ~ 2 “SE electron”/GeV @ 105/SEe Hadron Shower Signal: Larger SE e per GeV - particles of lower momentum: ->SE ~1.5-6 compared with 1.1-1.05 for MIP. <E> ~ 60 MeV/2cm cube; Calice: ~23 “particles”/Hadron GeV GEANT4 MC: ~740 charged hits/GeV ~35-75 SEe -> 4-75 SEe/GeV hadron calorimeter showers Electron Shower Signal: GEANT4 MC: ~900 SEe/GeV ~45-90 SEe N.B.: e/pi ~ 0.8 - possible compensation

Secondary Emission Calorimeter Sensor Basics: - Top Metal Cathode, thin film SE inner Surface – Square/Hex/ –can be thick! - Ceramic (Green Form) Edge Wall; HV feedthrus, supports; ~1cm high Dynode Stack – mesh, MCP, slats, etc ~5-10 mm - Bottom Metal Anode – thick/identical to Cathode/Vacuum pump tip; -

Schematic SEM Calorimeter Sensor Module - Plate Cathode/Anode Option SLHC R&D technology –Secondary Emission Sensor Modules for Calorimeters Schematic SEM Calorimeter Sensor Module - Plate Cathode/Anode Option

SE Calorimeter Manufacture Issues - Similar to m2 Low Pressure Gas Plasma Display Technology Proof of Principle/Manufacture - SE Calo sensor far simpler Hermetic + Voltages similar to dynodes Vacuum Supported by Ceramic walls or posts -> thin metal windows Ceramic Body 2.5” MCP-PMT

Basic Idea: Dynode/SE Stack is a High Gain Radiation Sensor SE Calorimeter R&D technology Secondary Emission Sensors for Calorimeters Basic Idea: Dynode/SE Stack is a High Gain Radiation Sensor High Gain & OK Efficient (MgO yield ~0.1 e/mip per sample) Energy Resolution: stochastic term ~10-50 SEe/GeV Compact (micromachined metal ~0.3-1mm thick/stage) Rad-Hard (PMT dynodes>100 GRads) Uber-Fast Potentially low cost/Non-Critical Assy Simple Al oxide SEM monitors proven at accelerators Rugged/Could be structural element Easily integrated into large calorimeters/Arbitrary Shapes ~Minimal Dead Areas Minimal services needed. SE Detector Modules Are Applicable to: - Energy-Flow Calorimeters (e+e-, µC, SLHC,….) - Forward HiRad HiRate Calorimeters - Compensation