CSE 592 INTERNET CENSORSHIP (FALL 2015) LECTURE 04 PHILLIPA GILL, STONY BROOK UNIVERSITY ACKS: SLIDES BASED ON MATERIAL FROM NICK WEAVER’S PRESENTATION.

Slides:



Advertisements
Similar presentations
DNS: Domain Name System CMPSCI 491G: Computer Networking Lab V. Arun Slides adapted from Liebeherr & Zarki, Kurose & Ross, Kermani.
Advertisements

DNS – Domain Name system Converting domain names to IP addresses since 1983.
 This Class  Chapter 9  Next Class  Wrap up this semester  Demo/discuss programming assignments  Review what we have learned  Questionnaire/Feedback.
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Term B10.
1 EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Spring 2012 Spring 2012.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
2: Application Layer1 FTP, SMTP and DNS. 2: Application Layer2 FTP: separate control, data connections r FTP client contacts FTP server at port 21, specifying.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts, routers: –IP address (32 bit) - used for addressing datagrams –“name”, e.g., gaia.cs.umass.edu.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
Application Layer session 1 TELE3118: Network Technologies Week 12: DNS Some slides have been taken from: r Computer Networking: A Top Down Approach.
CPSC 441: DNS1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes derived.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Name Resolution and DNS. Domain names and IP addresses r People prefer to use easy-to-remember names instead of IP addresses r Domain names are alphanumeric.
Chapter 2 Application Layer
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
NET0183 Networks and Communications Lecture 25 DNS Domain Name System 8/25/20091 NET0183 Networks and Communications by Dr Andy Brooks.
CIS3360: Security in Computing Chapter 6 : Network Security II Cliff Zou Spring 2012.
Cours du 22 novembre. Application Layer 2-2 Couche application DNS.
CS 4396 Computer Networks Lab
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts: – IP address (32 bit) - used for addressing datagrams – “name”, e.g.,
Domain Name System (DNS)
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 10 Omar Meqdadi Department of Computer Science and Software Engineering University.
DNS. 2 DNS: Domain Name System DNS services Hostname to IP address translation Host aliasing – Canonical and alias names Mail server aliasing Load distribution.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
CS 471/571 Domain Name Server Slides from Kurose and Ross.
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 2: Application.
DNS: Domain Name System
Review: –Which protocol is used to move messages around in the Internet? –Describe how a message is moved from the sender’s UA to the receiver’s.
1 DNS: Domain Name System People: many identifiers: m SSN, name, Passport # Internet hosts, routers: m IP address (32 bit) - used for addressing datagrams.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
1 Application Layer Lecture 6 Imran Ahmed University of Management & Technology.
DNS: Domain Name System People: many identifiers: – SSN, name, Passport # Internet hosts, routers: – IP address (32 bit) - used for addressing datagrams.
Lecture 6: Video Streaming 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser types [NSDI 2014]
25.1 Chapter 25 Domain Name System Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
2: Application Layer1 DNS: Domain Name System People have many identifiers: SSN, name, passport number Internet hosts, routers have identifiers, too: IP.
CPSC 441: DNS 1. DNS: Domain Name System Internet hosts: m IP address (32 bit) - used for addressing datagrams m “name”, e.g., - used by.
CS 3830 Day 10 Introduction 1-1. Announcements r Quiz #2 this Friday r Program 2 posted yesterday 2: Application Layer 2.
Lecture 5: Web Continued 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser types [NSDI 2014]
FTP, Mail and DNS protocols
1 EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer Networking book.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
1 Kyung Hee University Chapter 19 DNS (Domain Name System)
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Lecture 3: Web Continued Application Layer 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser.
1. Internet hosts:  IP address (32 bit) - used for addressing datagrams  “name”, e.g., ww.yahoo.com - used by humans DNS: provides translation between.
Application Layer, 2.5 DNS 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.
Important r On Friday, could you ask students to please me their groups (one per group) for Project 2 so we can assign IP addresses. I’ll send.
CSEN 404 Application Layer II Amr El Mougy Lamia Al Badrawy.
Spring 2006 CPE : Application Layer_DNS 1 Special Topics in Computer Engineering Application layer: Domain Name System Some of these Slides are.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
CS590B/690B Measuring network interference (Fall 2016)
Introduction to Networks
Session 6 INST 346 Technologies, Infrastructure and Architecture
Chapter 9: Domain Name Servers
Introduction to Communication Networks
Chapter 7: Application layer
Cookies, Web Cache & DNS Dr. Adil Yousif.
EEC-484/584 Computer Networks
DNS: Domain Name System
FTP, SMTP and DNS 2: Application Layer.
Chapter 2 Application Layer
Lecture 3 – Chapter 2 CIS 5617, Fall 2019 Anduo Wang
Presentation transcript:

CSE 592 INTERNET CENSORSHIP (FALL 2015) LECTURE 04 PHILLIPA GILL, STONY BROOK UNIVERSITY ACKS: SLIDES BASED ON MATERIAL FROM NICK WEAVER’S PRESENTATION AT THE CONNAUGHT SUMMER INSTITUTE 2013 ALSO FROM: KUROSE + ROSS; COMPUTER NETWORKING A TOP DOWN APPROACH FEATURING THE INTERNET (6 TH EDITION)

ADMINISTRATIVE NOTE Change in how course is graded. Reduced workload Rescaled all items such that total is >100 You only need to score 100 to get full marks in the course Pick/choose items that interest you to make up the % Course Project 30% Midterms (15% each) 40% Assignments (10% each) 15% Paper summaries 20% Paper presentations (5% each) If you have friends that dropped because of the workload please let them know about the change!

WHERE WE ARE Last time: TCP Resets for censorship Fingerprinting Reset Injectors (NDSS 2009 paper) On path vs. In path censorship Questions?

TEST YOUR UNDERSTANDING 1.What is the difference between an in-path and on-path censor? 2.What are the pros of each approach? 3.Cons? 4.What are the two race conditions that can occur with reset injectors? 5.What headers would you look at to ID a reset injector? 6.How would you localize an injector to a specific location in the network? 7.If the TCP reset occurs before the HTTP GET what can you say about the trigger? 8.After?

OVERVIEW Block IP addresses IP layer Disrupt TCP flows TCP (transport layer) Many possible triggers Block hostnames DNS (application layer) Disrupt HTTP transfers HTTP (application layer) Today

DOMAIN NAME SYSTEM (DNS)

Application Layer 2-7 requesting host cis.poly.edu gaia.cs.umass.edu root DNS server local DNS server dns.poly.edu authoritative DNS server dns.cs.umass.edu 7 8 TLD DNS server DNS NAME RESOLUTION EXAMPLE host at cis.poly.edu wants IP address for gaia.cs.umass.edu iterated query:  contacted server replies with name of server to contact  “I don’t know this name, but ask this server”

Application Layer 2-8 Root DNS Servers com DNS servers org DNS serversedu DNS servers poly.edu DNS servers umass.edu DNS servers yahoo.com DNS servers amazon.com DNS servers pbs.org DNS servers DNS: A DISTRIBUTED, HIERARCHICAL DATABASE … …

Application Layer 2-9 DNS: ROOT NAME SERVERS contacted by local name server that can not resolve name root name server: contacts authoritative name server if name mapping not known gets mapping returns mapping to local name server 13 root name “servers” worldwide a. Verisign, Los Angeles CA (5 other sites) b. USC-ISI Marina del Rey, CA l. ICANN Los Angeles, CA (41 other sites) e. NASA Mt View, CA f. Internet Software C. Palo Alto, CA (and 48 other sites) i. Netnod, Stockholm (37 other sites) k. RIPE London (17 other sites) m. WIDE Tokyo (5 other sites) c. Cogent, Herndon, VA (5 other sites) d. U Maryland College Park, MD h. ARL Aberdeen, MD j. Verisign, Dulles VA (69 other sites ) g. US DoD Columbus, OH (5 other sites)

Application Layer 2-10 TLD, AUTHORITATIVE SERVERS top-level domain (TLD) servers: responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp Network Solutions maintains servers for.com TLD Educause for.edu TLD authoritative DNS servers: organization’s own DNS server(s), providing authoritative hostname to IP mappings for organization’s named hosts can be maintained by organization or service provider

Application Layer 2-11 DNS RECORDS DNS: distributed db storing resource records (RR) type=NS name is domain (e.g., foo.com) value is hostname of authoritative name server for this domain RR format: (name, value, type, ttl) type=A  name is hostname  value is IP address type=CNAME  name is alias name for some “canonical” (the real) name  is really servereast.backup2.ibm.com  value is canonical name type=MX  value is name of mailserver associated with name

Application Layer 2-12 DNS PROTOCOL, MESSAGES query and reply messages, both with same message format msg header  identification: 16 bit # for query, reply to query uses same #  flags:  query or reply  recursion desired  recursion available  reply is authoritative identificationflags # questions questions (variable # of questions) # additional RRs # authority RRs # answer RRs answers (variable # of RRs) authority (variable # of RRs) additional info (variable # of RRs) 2 bytes

Application Layer 2-13 name, type fields for a query RRs in response to query records for authoritative servers additional “helpful” info that may be used identificationflags # questions questions (variable # of questions) # additional RRs # authority RRs # answer RRs answers (variable # of RRs) authority (variable # of RRs) additional info (variable # of RRs) 2 bytes DNS PROTOCOL, MESSAGES

Application Layer 2-14 DNS: CACHING, UPDATING RECORDS once (any) name server learns mapping, it caches mapping cache entries timeout (disappear) after some time (TTL) TLD servers typically cached in local name servers thus root name servers not often visited cached entries may be out-of-date (best effort name-to-address translation!) if name host changes IP address, may not be known Internet-wide until all TTLs expire update/notify mechanisms proposed IETF standard RFC 2136

OK … SO NOW WE KNOW ABOUT DNS … how can we block it! A few things to keep in mind … No cryptographic integrity of DNS messages DNSSEC proposed but not widely implemented Caching of replies means leakage of bad DNS data can persist

BLOCKING DNS NAMES

This diagram assumes ISP DNS Server is complicit. This diagram assumes ISP DNS Server is complicit. DNS Server ( ) TYPES OF FALSE DNS RESPONSES Home connection ( ) 3 rd Party DNS Server ( ) DNS QTYPE A NXDOMAIN DNS RESPONSE A DNS RESPONSE A DNS RESPONSE A Block page server ( ) DNS RESPONSE A (correct IP)

BLOCKING DNS NAMES Option A: get ISP resolver on board (Previous slide) Option B: On-path packet injection similar to TCP Resets Can be mostly countered with DNS-hold-open: Don’t take the first answer but instead wait for up to a second Generally reliable when using an out of country recursive resolve E.g., Can be completely countered by DNS-hold-open + DNSSEC Accept the first DNS reply which validates

READING FROM WEB … Hold-On: Protecting Against On-Path DNS Poisoning H. Duan, N. Weaver, Z. Zhao, M. Hu, J. Liang, J. Jiang, K. Li, and V. Paxson. Idea: Once you receive a DNS packet, wait for a predefined “hold-on” period before accepting the result. DNSSEC is still vulnerable to these injected packets and does not make hold-on unneccessary Inject a reply with an invalid signature: client will reject Use active measurements to determine the expected TTL and RTT to the server.

COLLATERAL DAMAGE (READING) “The Collateral Damage of Internet Censorship by DNS Injection” Anonymous. ACM Computer Communication Review Questions: How many ASes implement injection-based DNS censorship What is the collateral damage?

HOW TO MAP COLLATERAL DAMAGE Issue HoneyQueries DNS queries for sensitive domain names to 14M IP addresses in different /24 networks (not hosting DNS) Reply should only come if there is an on-path DNS injector Can detect if a path contains an injector as well as the IP address returned. Most paths found were to target IPs in China (well known DNS censor) Can also locate where on the path the censor is Issue DNS query to blacklisted domain with incrementing TTL Issue queries to recursive resolvers so look for lemon IP addresses in their results Query to distribute queries across root servers Query {random}.tld to test poisoning between resolver + TLD

NUMBER OF AFFECTED RESOLVERS FOR ALL TLDS

WHERE ARE THE IMPACTED RESOLVERS

HANDS ON ACTIVITY DNS queries to China -Works with custom Python client vs. Dig, if you figure out why post to Piazza! -Eg., look at packet captures of dig

NEXT TIME … Filtering of Web requests at application layer.

ADDITIONAL SLIDES