Poznamka: Velmi se omlouvam se za zpozdeni, zakon schvalnosti pracuje az priliz dobre. Prezentace jeste neni dokonale kompletni. Velmi bych velmi ocenil jakekoli primominky, navrhy a rady. Omlouvam se a mnohokrat dekuji, Jindrich Fixa
10/4/20152
Fusion the energy of the future? I. Fusion II. Tokamaks III. History vs. the future
Fusion the energy of the future? I. Fusion <- II. Tokamaks III. History vs. the future
I. Fusion: a) Why fusion ? b) Fusion reactions c) Plasma in nature d) Plasma definition
a)Why fusion ? Ecology Safety Fuel effective Fuel resources
a)Why fusion ? – Fuel resources Gigajoules (10 9 joules)Divided by world annual energy consumption per year ( Present consumption3 * year Coal1.0 * years Oil1.2 * years Natural gas1.4 * years Uranium 235 (fission) years Uranium 238 and thorium 232 (breeder reactors) years Lithium (D-T fusion reactors) - Land - Oceans years 30* 10 6 years
b) Fusion reactions: D + D -> 3 He + n MeV D + D -> T + p MeV D + T -> 4 He + n MeV
d) Plasma definition The plasma approximation Bulk interactions Plasma frequency
c) Plasma in nature 99% of the space is made up form plasma yet there is almost none on Earth
Fusion the energy of the future? I. Fusion II. Tokamaks <- III. History vs. the future
II. Tokamaks: a) Fusion and tokamaks b) Ignition condition c) Plasma confinement d) Tokamak reactor e) Tokamak economics
Before we begin: The system units m.k.s. Temperatures – J or eV (or keV)
a) Fusion and tokamaks D + T -> 4 He + n MeV Most promising method of supplying energy
b) Thermonuclear fusion Most promising method of supplying energy Heating methods:
b) Ignition condition ignition temperature is keV -+10%
c) Plasma confinement Poloidal coil (Primary + t oroidal coil)
d) Tokamak reactor Blanket Vacuum Vessel
e) Tokamak economics Total cost Direct cost 65% Indirect cost 25% Contingency 10% Direct cost Reactor 50-60% Conventional plant 35-30% Structures 15-10% Reactor cost Coils30%Heat transfer15% Shield10%Auxiliary power 15% Blanket 10%Other components20%
Fusion the energy of the future? I. Fusion II. Tokamaks III. History vs. the future <-
III. History vs. the future a) Historical milestones b) Tokamak development c) ITER on it’s way
a) Historical milestones 1905 – A. Einstein: E = m * c A.S. Eddington: Energy source in stars I. Langmur: “Plasma” 1934 – E. Rutherford: D+D fusion J.D. Lawson: Lawson criteria 1960 – I.A.Kuechatov: Lecture at Harvell 1983 – JET 1991 – JET – D-T combination as a fuel
b) Tokamak development 2015 – ITER – first physic experiments 2014 – DEMO – project begins 2024 – ITER – technological experiments 2024 – DEMO – construction 2032 – DEMO– start 2034 – ITER – deconstruction 2046 – DEMO – deconstruction 2050 – First fusion power plant?
c) ITER on it’s way Where? - France - Cadarache When? - First experiments are planed to 2014 How?- Together and with class MW
d) Look into the future
What future holds ? ITER 3x bigger then the biggest current tokamak in the world.
Recapitulation So why is it not here yet ? Expensive development Initial investment Is fusion the energy of the future ? Safe Effective Resourceful Cheap to run
Source: Tokamaks - John Wesson (Oxford science publications) Focus On: JET - The European Center of Fusion Research - Jan Mlynář The science of JET - John Wesson Úvod do fyziky plazmatu - Francis F. Chen Řízená termojaderná syntéza pro kazdeho - Milan Řípa, Vladimír Weinzettl, Jan Mlynář, František Žáčekg Web of science Science Direct
Thanks to : Milan Řípa Jan Mlynář Jan Horácek Vojtěch Svoboda
Jindrich Fixa 10/4/201530