11 Role of tensor force in light nuclei based on the tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Manuel Valverde RCNP, Osaka Univ. Atsushi.

Slides:



Advertisements
Similar presentations
反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
Advertisements

LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
Lectures in Istanbul Hiroyuki Sagawa, Univeristy of Aizu June 30-July 4, Giant Resonances and Nuclear Equation of States 2. Pairing correlations.
Possible existence of neutral hyper-nucleus with strangeness -2 and its production SPN 2014, Changsha, Dec , 2014 Institute of High Energy Physics.
8 He における ダイニュートロン形成と崩 れ 2013/7/27 RCNP 研究会「核子・ハイペロン多体系におけるクラスター現象」 1 Department of Physics, Kyoto University Fumiharu Kobayashi Yoshiko Kanada-En’yo arXiv:
Dineutron formation and breaking in 8 He th Sep. The 22nd European Conference on Few-Body Problems in Physics 1 Department of Physics, Kyoto University.
KEK SRC Workshop Sept 25, 2009 KEK Theory Center Workshop on Short-range Correlations and Tensor Structure at J-PARC September 25, 2009 Search for Direct.
Lawrence Livermore National Laboratory Scattering of light nuclei LLNL-PRES-XXXXXX Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA.
Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété.
Unified Description of Bound and Unbound States -- Resolution of Identity -- K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (2)
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
Ab initio No-Core Shell Model with the continuum of 3 H(d,n) 4 He fusion reaction Guillaume Hupin FUSTIPEN, March 19 th Collaborators: S. Quaglioni.
K - pp studied with Coupled-channel Complex Scaling method Workshop on “Hadron and Nuclear Physics (HNP09)” Arata hall, Osaka univ., Ibaraki,
理研.08 少数体系アプローチの研究と今後の課題 Few-Body Approach and Future Problems ・ NN interaction is characterized by strong short-range repulsion and long-range tensor.
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
1 軽い核におけるテンソル相関と 短距離相関の役割 核子と中間子の多体問題の統一的描像に向けて@ RCNP Tensor correlation for He and Li isotopes in Tensor-Optimized Shell Model (TOSM)
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
LBL 5/21/2007J.W. Holt1 Medium-modified NN interactions Jeremy W. Holt* Nuclear Theory Group State University of New York * with G.E. Brown, J.D. Holt,
FB181 Dynamics of Macroscopic and Microscopic Three-Body Systems Outline Three-body systems of composite particles (clusters) Macroscopic = Use of fewer.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
RCNP.08 Breakup of halo nuclei with Coulomb-corrected eikonal method Y. Suzuki (Niigata) 1.Motivation for breakup reactions 2.Eikonal and adiabatic approximations.
Cluster-shell Competition in Light Nuclei N. Itagaki, University of Tokyo S. Aoyama, Kitami Institute of Technology K. Ikeda, RIKEN S. Okabe, Hokkaido.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
We construct a relativistic framework which takes into pionic correlations(2p-2h) account seriously from both interests: 1. The role of pions on nuclei.
Application of coupled-channel Complex Scaling Method to Λ(1405) 1.Introduction Recent status of theoretical study of K - pp 2.Application of ccCSM to.
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Structure of neutron-rich Λ hypernuclei E. Hiyama (RIKEN)
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Cluster aspect of light unstable nuclei
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
Coulomb Breakup and Pairing Excitation of Two-Neutron Halo Nucleus 11 Li Niigata University S. Aoyama RCNPT. Myo Hokkaido UniveristyK. Kato RikenK. Ikeda.
Furong Xu (许甫荣) Many-body calculations with realistic and phenomenological nuclear forces Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
Furong Xu (许甫荣) Nuclear forces and applications to nuclear structure calculations Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
11 明 孝之 大阪工業大学 阪大 RCNP Tensor optimized shell model using bare interaction for light nuclei 共同研究者 土岐 博 阪大 RCNP 池田 清美 理研 RCNP
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Satoru Sugimoto Kyoto University 1. Introduction 2. Charge- and parity-projected Hartree-Fock method (a mean field type model) and its application to sub-closed.
Furong Xu (许甫荣) Many-body correlations in ab-initio methods Outline I. Nuclear forces, Renormalizations (induced correlations) II. N 3 LO (LQCD) MBPT,
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
理論から見たテンソル力 Hiroshi Toki (RCNP, Osaka University) In collaboration with T. Myo (Osaka IT) Y. Ogawa (RCNP) K. Horii (RCNP) K. Ikeda.
Tensor interaction in Extended Brueckner-Hartree-Fock theory Hiroshi Toki (RCNP, Osaka) In collaboration with Yoko Ogawa.
多体共鳴状態の境界条件によって解析した3α共鳴状態の構造
Description of nuclear structures in light nuclei with Brueckner-AMD
Nuclear structure calculations with realistic nuclear forces
Tensor optimized shell model and role of pion in finite nuclei
JLab6: Cluster structure connects to high-momentum components and internal quark modification of nuclei Short-Range Correlations (SRCs) dominated by np.
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
Relativistic Chiral Mean Field Model for Finite Nuclei
Relativistic mean field theory and chiral symmetry for finite nuclei
Relativistic extended chiral mean field model for finite nuclei
軽い不安定核における 共鳴状態の構造 明 孝之 大阪工業大学 1 KEK 理論セミナー  
Impurity effects in p-sd shell and neutron-rich L hypernuclei
Kernfysica: quarks, nucleonen en kernen
Pions in nuclei and tensor force
Few-body approach for structure of light kaonic nuclei
Role of tensor force in light nuclei with tensor optimized shell model
直交条件模型を用いた16Oにおけるαクラスターガス状態の研究
Ab-initio nuclear structure calculations with MBPT and BHF
Osaka Institute of Technology
Presentation transcript:

11 Role of tensor force in light nuclei based on the tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Manuel Valverde RCNP, Osaka Univ. Atsushi UMEYA RIKEN Kiyomi IKEDA RIKEN Takayuki MYO 明 孝之 Osaka Institute of Technology International conference on the structure of baryons Osaka Univ.,

Outline 2 Tensor correlation in light nuclei Tensor Optimized Shell Model (TOSM) to describe tensor correlation Unitary Correlation Operator Method (UCOM) for short-range correlation TOSM+UCOM with bare nuclear force Application of TOSM to Li isotopes halo formation in 11 Li

Tensor force (V tensor ) plays a significant role in the nuclear structure. –In 4 He,  V tensor  ~  V central  – ~ 80% (GFMC) 3 Importance of tensor force R.B. Wiringa, S.C. Pieper, J. Carlson, V.R. Pandharipande, PRC62(2001) We would like to understand role of V tensor in the nuclear structure by describing tensor correlation explicitly. tensor & short range correlations from V NN (bare) He, Li isotopes (LS splitting, halo formation, level inversion)

S D Energy MeV Kinetic19.88 Central Tensor LS P(L=2) 5.77% Radius 1.96 fm V central V tensor AV8’ Deuteron & tensor force R m (s)=2.00 fm R m (d)=1.22 fm d-wave is “spatially compact” r AV8’

TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257 5 Tensor-optimized shell model (TOSM) 5 4 He Tensor correlation in the shell model type approach. Configuration mixing within 2p2h excitations with high- L orbits. TM et al., PTP113(2005) TM et al., PTP117(2007) T.Terasawa, PTP22(’59)) Length parameters {b  } such as b 0s, b 0p, … are optimized independently (or superposed by many Gaussian bases). –Describe high momentum component from V tensor (Shrinkage) HF by Sugimoto et al,(NPA740) / Akaishi (NPA738) RMF by Ogawa et al.(PRC73), AMD by Dote et al.(PTP115)

Configurations in TOSM protonneutron Gaussian expansion nlj particle states hole states (harmonic oscillator basis) c.m. excitation is excluded by Lawson’s method Application to Hypernuclei by Umeya  coupling C0C0 C1C1 C2C2 C3C3

7 4 He in TOSM Orbitb particle /b hole 0p 1/ p 3/ s 1/ d 3/ d 5/ f 5/ f 7/ Length parameters good convergence Higher shell effect L max v nn : G -matrix Cf. K. Shimizu, M. Ichimura and A. Arima, NPA226(1973)282. shrink

8 Unitary Correlation Operator Method 8 H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61 short-range correlator Bare Hamiltonian Shift operator depending on the relative distance r TOSM 2-body cluster expansion

9 Short-range correlator : C (or C r ) 3GeV repulsion Original  r 2 CC VcVc 1E1E 3E3E 1O1O 3O3O s(r) [fm] We further introduce partial-wave dependence in “s(r)” of UCOM S-wave UCOM Shift functionTransformed V NN (AV8’)

10 T VTVT V LS VCVC E (exact) Kamada et al. PRC64 (Jacobi) Gaussian expansion with 9 Gaussians variational calculation TM, H. Toki, K. Ikeda PTP121(2009)511 4 He in TOSM + S-wave UCOM good convergence

11 Configurations of 4 He in TOSM + short-range UCOM (0s 1/2 ) % (0s 1/2 ) −2 JT (p 1/2 ) 2 JT JT= JT= (0s 1/2 ) −2 10 (1s 1/2 )(d 3/2 ) (0s 1/2 ) −2 10 (p 3/2 )(f 5/2 ) Radius [fm]  of pion nature. deuteron correlation with (J,T)=(1,0) Cf. R.Schiavilla et al. (GFMC) PRL98(’07) He contains p 1/2 of “pn”-pair.

5,6 He in TOSM+UCOM Argonne V8’ with no Coulomb force. Convergence for particle states. –L max ~10 –6~8 Gaussian for radial component Lawson method to eliminate CM excitation. Bound state approximation for resonances. Cf) GFMC : K.M. Nollett et al., PRL99 (2007) NCSM : S. Quaglioni, P. Navrátil, PRL101 (2008) SVM : Y.Suzuki, W.Horiuchi, K. Arai, NPA823 (2009) 1

4,5,6 He with TOSM+UCOM Difference from 4 He in MeV AV8’ Preliminary

5 He : Hamiltonian component Difference from 4 He in MeV 5 He3/2  1/2  TT  Central  9.0  7.0  Tensor  5.6  1.1  LS  EE Diff.=3.9 [MeV] =18.4 MeV (hole) b hole =1.5 fm for 4,5 He

Tensor correlation & Splitting in 5 He  V tensor  ~exact in 4 He Enhancement of V tensor

LS splitting in 5 He with tensor correlation T. Terasawa, A. Arima, PTP23 (’60) 87, 115. S. Nagata, T.Sasakawa, T.Sawada, R.Tamagaki, PTP22(’59) K. Ando, H. Bando PTP66 (’81) 227 TM, K.Kato, K.Ikeda PTP113 (’05) 763 (  +n OCM) 30% of the observed splitting from Pauli-blocking d-wave spliiting is weaker than p-wave splitting Pauli-Blocking

Phase shifts of 4 He-n scattering

18 Characteristics of Li-isotopes Breaking of magicity N= Li, Be 11 Li … (1s) 2 ~ 50%. (Expt by Simon et al.,PRL83) Mechanism is unclear 11 Li Tanihata et al., PRL55(1985)2676. PLB206(1998)592. Halo structure

19 9 Li in TOSM Tensor-optimized shell model TM et al., PTP121(2009), PTP117(2007). 0s+0p+1s0d within 2p2h excitations, G-matrix (Akaishi) Length parameters b 0s, b 0p, … are determined independently and variationally (or Gaussian expansion). –Describe high momentum component from V tensor cf. CPP-HF by Sugimoto et al.,NPA740 / Akaishi NPA738

Energy surface for b-parameter in 9 Li V tensor is optimized with shrunk HO basis cf. 1 st order (residual interaction): T. Otsuka et al. PRL95(2005) TOSM pairing correlation nn Dominant part of the tensor correlation pnpn

21 Pairing-blocking : K.Kato,T.Yamada,K.Ikeda,PTP101(‘99)119, Masui,S.Aoyama,TM,K.Kato,K.Ikeda,NPA673('00)207. TM,S.Aoyama,K.Kato,K.Ikeda,PTP108('02)133, H.Sagawa,B.A.Brown,H.Esbensen,PLB309('93)1.

22 11 Li in coupled 9 Li+n+n model System is solved based on RGM Orthogonality Condition Model (OCM) is applied. TOSM

23 11 Li G.S. properties (S 2n =0.31 MeV) Tensor +Pairing Simon et al. P(s 2 ) RmRm E(s 2 )-E(p 2 )  0.1 [MeV] Pairing correlation couples (0p) 2 and (1s) 2 for last 2n (pn)(pn)(nn)

24 Coulomb breakup strength of 11 Li E1 strength by using the Green’s function method +Complex scaling method +Equivalent photon method (TM et al., PRC63(’01)) Expt: T. Nakamura et al., PRL96,252502(2006) Energy resolution with =0.17 MeV. No three-body resonance T.Myo, K.Kato, H.Toki, K.Ikeda PRC76(2007)024305

25 Summary TOSM+UCOM with bare nuclear force. V tensor enhances LS splitting energy. Coexistence of tensor and pairing correlations, explicitly Halo formation in 11 Li Review Di-neutron clustering and deuteron-like tensor correlation in nuclear structure focusing on 11 Li K. Ikeda, T. Myo, K. Kato and H. Toki Springer, Lecture Notes in Physics 818 (2010) "Clusters in Nuclei" Vol.1,