Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.

Slides:



Advertisements
Similar presentations
反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
Advertisements

LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
Lectures in Istanbul Hiroyuki Sagawa, Univeristy of Aizu June 30-July 4, Giant Resonances and Nuclear Equation of States 2. Pairing correlations.
6 Oct DCEN A new framework to investigate dineutron correlation in neutron-rich nuclei Kyoto University, Department of Physics, Fumiharu Kobayashi.
8 He における ダイニュートロン形成と崩 れ 2013/7/27 RCNP 研究会「核子・ハイペロン多体系におけるクラスター現象」 1 Department of Physics, Kyoto University Fumiharu Kobayashi Yoshiko Kanada-En’yo arXiv:
Dineutron formation and breaking in 8 He th Sep. The 22nd European Conference on Few-Body Problems in Physics 1 Department of Physics, Kyoto University.
Study of Weakly Bound Nuclei with an Extended Cluster-Orbital Shell Model Hiroshi MASUI Kitami Institute of Technology, Kitami, Japan K. Kato Hokkaido.
KEK SRC Workshop Sept 25, 2009 KEK Theory Center Workshop on Short-range Correlations and Tensor Structure at J-PARC September 25, 2009 Search for Direct.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
K - pp studied with Coupled-channel Complex Scaling method Workshop on “Hadron and Nuclear Physics (HNP09)” Arata hall, Osaka univ., Ibaraki,
J/ψ - bound nuclei and J/ψ - nucleon interaction Akira Yokota Tokyo Institute of Technology Collaborating with Emiko Hiyama a and Makoto Oka b RIKEN Nishina.
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
11 Role of tensor force in light nuclei based on the tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Manuel Valverde RCNP, Osaka Univ. Atsushi.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
1 軽い核におけるテンソル相関と 短距離相関の役割 核子と中間子の多体問題の統一的描像に向けて@ RCNP Tensor correlation for He and Li isotopes in Tensor-Optimized Shell Model (TOSM)
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
LBL 5/21/2007J.W. Holt1 Medium-modified NN interactions Jeremy W. Holt* Nuclear Theory Group State University of New York * with G.E. Brown, J.D. Holt,
FB181 Dynamics of Macroscopic and Microscopic Three-Body Systems Outline Three-body systems of composite particles (clusters) Macroscopic = Use of fewer.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Cluster-shell Competition in Light Nuclei N. Itagaki, University of Tokyo S. Aoyama, Kitami Institute of Technology K. Ikeda, RIKEN S. Okabe, Hokkaido.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Relativistic mean field and RPA with negative energy states for finite nuclei Akihiro Haga, Hiroshi Toki, Setsuo Tamenaga, Yoko Ogawa, Research Center.
We construct a relativistic framework which takes into pionic correlations(2p-2h) account seriously from both interests: 1. The role of pions on nuclei.
Application of coupled-channel Complex Scaling Method to Λ(1405) 1.Introduction Recent status of theoretical study of K - pp 2.Application of ccCSM to.
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
Erosion of N=28 Shell Gap and Triple Shape Coexistence in the vicinity of 44 S M. KIMURA (HOKKAIDO UNIV.) Y. TANIGUCHI (RIKEN), Y. KANADA-EN’YO(KYOTO UNIV.)
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Cluster aspect of light unstable nuclei
Deformations of sd and pf shell  hypernuclei with antisymmetrized molecular dynamics Masahiro Isaka (RIKEN)
Studies of hypernuclei with the AMD method Masahiro ISAKA Institute of Physical and Chemical Research (RIKEN) Focusing on 25  Mg, based on M. Isaka, M.
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
Coulomb Breakup and Pairing Excitation of Two-Neutron Halo Nucleus 11 Li Niigata University S. Aoyama RCNPT. Myo Hokkaido UniveristyK. Kato RikenK. Ikeda.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
11 明 孝之 大阪工業大学 阪大 RCNP Tensor optimized shell model using bare interaction for light nuclei 共同研究者 土岐 博 阪大 RCNP 池田 清美 理研 RCNP
Possible molecular bound state of two charmed baryons - hadronic molecular state of two Λ c s - Wakafumi Meguro, Yan-Rui Liu, Makoto Oka (Tokyo Institute.
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Satoru Sugimoto Kyoto University 1. Introduction 2. Charge- and parity-projected Hartree-Fock method (a mean field type model) and its application to sub-closed.
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
理論から見たテンソル力 Hiroshi Toki (RCNP, Osaka University) In collaboration with T. Myo (Osaka IT) Y. Ogawa (RCNP) K. Horii (RCNP) K. Ikeda.
Tensor interaction in Extended Brueckner-Hartree-Fock theory Hiroshi Toki (RCNP, Osaka) In collaboration with Yoko Ogawa.
多体共鳴状態の境界条件によって解析した3α共鳴状態の構造
Pairing Correlation in neutron-rich nuclei
Description of nuclear structures in light nuclei with Brueckner-AMD
Kaon Absorption from Kaonic Atoms and
Nuclear structure calculations with realistic nuclear forces
Tensor optimized shell model and role of pion in finite nuclei
Structure and dynamics from the time-dependent Hartree-Fock model
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
Relativistic mean field theory and chiral symmetry for finite nuclei
Relativistic extended chiral mean field model for finite nuclei
軽い不安定核における 共鳴状態の構造 明 孝之 大阪工業大学 1 KEK 理論セミナー  
Impurity effects in p-sd shell and neutron-rich L hypernuclei
Kernfysica: quarks, nucleonen en kernen
Pions in nuclei and tensor force
Few-body approach for structure of light kaonic nuclei
Role of tensor force in light nuclei with tensor optimized shell model
直交条件模型を用いた16Oにおけるαクラスターガス状態の研究
Ab-initio nuclear structure calculations with MBPT and BHF
Osaka Institute of Technology
Presentation transcript:

Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki MYO Osaka Institute of Technology The Fifth Asia-Pacific Conference on Few-Body Problems in Seoul, Korea,

Purpose & Outline 2 We would like to understand role of V tensor in the nuclear structure by describing strong tensor correlation explicitly. Tensor Optimized Shell Model (TOSM) to describe tensor correlation Unitary Correlation Operator Method (UCOM) to describe short-range correlation TOSM+UCOM to He & Li isotopes with V bare TM, K. Kato, H. Toki, K. Ikeda, PRC76(2007) TM, H. Toki, K. Ikeda, PTP121(2009)511 TM, A. Umeya, H. Toki, K. Ikeda, PRC(2011) in press.

S D Energy MeV Kinetic19.88 Central Tensor LS P( L=2 ) 5.77% Radius 1.96 fm V central V tensor AV8’ Deuteron properties & tensor force R m (s)=2.00 fm R m (d)=1.22 fm d-wave is “spatially compact” (high momentum) r AV8’

TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257 4 Tensor-optimized shell model (TOSM) 4 4 He Configuration mixing within 2p2h excitations with high- L orbits. TM et al., PTP113(2005) TM et al., PTP117(2007) T.Terasawa, PTP22(’59)) Length parameters such as b 0s, b 0p, … are optimized independently (or superposed by many Gaussian bases). –Describe high momentum component from V tensor –Spatial shrinkage of relative D-wave component as seen in deuteron HF by Sugimoto et al,(NPA740) / Akaishi (NPA738) RMF by Ogawa et al.(PRC73), AMD by Dote et al.(PTP115)

Hamiltonian and variational equations in TOSM c.m. excitation is excluded by Lawson’s method (0p0h+1p1h+2p2h) TOSM code : p-shell region Particle state : Gaussian expansion for each orbit Gaussian basis function

Configurations of 5 He in TOSM protonneutron Gaussian expansion nlj particle states hole states (harmonic oscillator basis) c.m. excitation is excluded by Lawson’s method Application to Hypernuclei by Umeya C0C0 C1C1 C2C2 C3C3 Tomorrow

7 Unitary Correlation Operator Method 7 H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61 short-range correlator Bare Hamiltonian Shift operator depending on the relative distance TOSM 2-body cluster expansion Amount of shift, variationally determined. (short-range part)

8 T VTVT V LS VCVC E (exact) Kamada et al. PRC64 (Jacobi) Gaussian expansion with 9 Gaussians variational calculation TM, H. Toki, K. Ikeda PTP121(2009)511 4 He in TOSM + S-wave UCOM good convergence

4-8 He with TOSM+UCOM Difference from 4 He in MeV No V NNN No continuum ~6 MeV in 8 He using GFMC ~7 MeV in 8 He using Cluster model (PLB691(2010)150, TM et al.) 4p4h in TOSM

4-8 He with TOSM+UCOM Excitation energies in MeV No V NNN No continuum Excitation energy spectra are reproduced well

5-9 Li with TOSM+UCOM Excitation energies in MeV No V NNN No continuum Preliminary results Excitation energy spectra are reproduced well

12 Matter radius of He isotopes I. Tanihata et al., PLB289(‘92)261 G. D. Alkhazov et al., PRL78(‘97)2313 O. A. Kiselev et al., EPJA 25, Suppl. 1(‘05)215. P. Mueller et al., PRL99(2007) TOSM Expt TM, R. Ando, K. Kato PLB691(2010)150 Halo Skin Cluster model

13 Configurations of 4 He (0s 1/2 ) % (0s 1/2 ) −2 JT (p 1/2 ) 2 JT JT= JT= (0s 1/2 ) −2 10 (1s 1/2 )(d 3/2 ) (0s 1/2 ) −2 10 (p 3/2 )(f 5/2 ) Radius [fm] Cf. R.Schiavilla et al. (VMC) PRL98(’07) He contains p 1/2 of “pn-pair”. 0  of pion nature. deuteron correlation with (J,T)=(1,0)

14 Tensor correlation in 6 He 14 Ground state Excited state TM, K. Kato, K. Ikeda, J. Phys. G31 (2005) S1681 Tensor correlation is suppressed due to Pauli-Blocking val.-n halo state (0 + )

6 He : Hamiltonian component Difference from 4 He in MeV 6 He n 2 config(p 3/2 ) 2 (p 1/2 ) 2  Kin  Central  27.8  22.9  14.1  Tensor  12.0  12.8  0.2  LS  4.0  =18.4 MeV (hole) b hole =1.5 fm same trend in 5,7,8 He

16 Summary TOSM+UCOM with bare nuclear force. 4 He contains “pn-pair” of p 1/2 than p 3/2. He isotopes with p 3/2 has large contributions of V tensor & Kinetic energy than those with p 1/2. V tensor enhances LS splitting energy. –TM, A. Umeya, H. Toki, K. Ikeda, PRC(2011) in press. Review Di-neutron clustering and deuteron-like tensor correlation in nuclear structure focusing on 11 Li K. Ikeda, T. Myo, K. Kato and H. Toki Springer, Lecture Notes in Physics 818 (2010) “Clusters in Nuclei” Vol.1,

4-8 He in TOSM+UCOM Argonne V8’ w/o Coulomb force. Convergence for particle states. –L max =10 –6~8 Gaussian for radial component Lawson method to eliminate CM excitation. Bound state approximation for resonances. TM, H. Toki, K. Ikeda, PTP121(2009)511 TM, A. Umeya, H. Toki, K. Ikeda, PRC, in press.

5 He : Hamiltonian component Difference from 4 He in MeV 5 He 3/2  1/2  n config.p 3/2 p 1/2  Kin  Central  9.0  7.0  Tensor  5.6  1.1  LS  =18.4 MeV (hole) b hole =1.5 fm

LS splitting in 5 He & tensor correlation T. Terasawa, A. Arima, PTP23 (’60) 87, 115. S. Nagata, T.Sasakawa, T.Sawada, R.Tamagaki, PTP22(’59) K. Ando, H. Bando PTP66 (’81) 227 TM, K.Kato, K.Ikeda PTP113 (’05) 763 (  +n OCM) 30% of the observed splitting from Pauli-blocking d-wave splitting is weaker than p-wave splitting Pauli-Blocking val.-n

Tensor correlation & Splitting in 5 He  V tensor  ~exact in 4 He Enhancement of V tensor

4-8 He with TOSM No V NNN No continuum Difference from 4 He in MeV Minnesota force (Central+LS)

22 Short-range correlator : C (or C r ) 3GeV repulsion Original  r 2 CC VcVc 1E1E 3E3E 1O1O 3O3O s(r) [fm] We further introduce partial-wave dependence in “s(r)” of UCOM S-wave UCOM Shift functionTransformed V NN (AV8’)

Tensor force (V tensor ) plays a significant role in the nuclear structure. –In 4 He,  V tensor  ~  V central  (AV18, GFMC) –Main origin :  -exchange in pn-pair 23 Importance of tensor force We would like to understand the role of V tensor in the nuclear structure by describing tensor correlation explicitly. tensor correlation + short range correlation model wave functions : shell model, cluster model (TOSM: Tensor Optimized Shell Model) He, Li isotopes (LS splitting, halo formation, level inversion)

7 He : Hamiltonian component Difference from 4 He in MeV 7 He 3/2  1 3/2  2 3/2  3 n 3 config(p 3/2 ) 3 (p 3/2 ) 2 (p 1/2 )(p 3/2 )(p 1/2 ) 2  Kin  Central  39.1  33.6  27.0  Tensor  19.9  16.0  10.0  LS  8.6  2.8  1.0 b hole =1.5 fm

8 He : Hamiltonian component Difference from 4 He in MeV 8 He n 4 config(p 3/2 ) 4 (p 3/2 ) 2 (p 1/2 ) 2 (p 3/2 ) 3 (p 3/2 )  Kin  Central  59.2  51.6  56.2  Tensor  25.2  17.1  23.4  LS  11.6  2.55  7.1 b hole =1.5 fm