여 아란 2013. 2. 22. Long-lived transition disk systems.

Slides:



Advertisements
Similar presentations
Chemical constraints on Theories of Planet Formation Vincent Geers Institute for Astronomy, ETH Zurich Star & Planet Formation group A. Banzatti, S. Bruderer,
Advertisements

Probing the Conditions for Planet Formation in Inner Protoplanetary Disks James Muzerolle.
Millimeter-Wavelength Observations of Circumstellar Disks and what they can tell us about planets A. Meredith Hughes Miller Fellow, UC Berkeley David Wilner,
Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks Christine H. Chen (NOAO) IRS Disks Team astro-ph/
Accretion and Variability in T Tauri Disks James Muzerolle.
Protoplanetary Disks: The Initial Conditions of Planet Formation Eric Mamajek University of Rochester, Dept. of Physics & Astronomy Astrobio 2010 – Santiago.
Disks - Variability, Gaps & Protoplanets A Practical Guide.
ATCA millimetre observations of young dusty disks Chris Wright, ARC ARF, Dave Lommen, Leiden University Tyler Bourke, Michael Burton, Annie Hughes,
Gaspard Duchêne University of California Berkeley Observatoire de Grenoble G. Duchêne - Circumstellar disks and young stars - IAUS Barcelona, June.
Evolution of Gas in Disks Joan Najita National Optical Astronomy Observatory Steve Strom John Carr Al Glassgold.
High-contrast imaging with AO Claire Max with help of Bruce Macintosh GSMT Science Working Group December 2002.
The Origin of Brown Dwarfs Kevin L. Luhman Penn State.
1 Concluding Panel Al Glassgold Sienny Shang Jonathan Williams David Wilner.
Hot Molecular Gas Orbiting Young Stars: Planet Forming Disks or Small Stellar Companions? A look at data taken at the 200” Mount Palomar Telescope, and.
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
Scientists Find Possible Birth of Tiniest Known Solar System ? Jeng-Lwen, Chiu Institute of Physics, NTHU 2005 / 12 / 15.
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
Disk evolution and Clearing P. D’Alessio (CRYA) C. Briceno (CIDA) J. Hernandez (CIDA & Michigan) L. Hartmann (Michigan) J. Muzerolle (Steward) A. Sicilia-Aguilar.
Comparison of Photometric And Spectroscopic Redshifts.
1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean.
Gas Emission From TW Hya: Origin of the Inner Hole Uma Gorti NASA Ames/SETI (Collaborators: David Hollenbach, Joan Najita, Ilaria Pascucci)
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
E-ELT/HIRES on young stars: Star - protoplanetary disk interaction
Evolution of protoplanetary disks Some new rules for planet- and star-formers, from the bounty of the Spitzer and Herschel missions. Dan Watson University.
A young massive planet in a star-disk system Setiawan, Henning, Launhardt et al. January 2008, Nature Letter 451 ESO Journal Club – January 2008.
Spectrophotometric properties of the nearest pre-main sequence stars A-Ran Lyo.
The Impact of Multiplicity on Planet Formation Adam Kraus Hawaii-IfA Michael Ireland (Sydney), Frantz Martinache (Subaru), Lynne Hillenbrand (Caltech)
The Origin of Gaps and Holes in Transition Disks Uma Gorti (SETI Institute) Collaborators: D. Hollenbach (SETI), G. D’Angelo (SETI/NASA Ames), C.P. Dullemond.
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
1 ALMA Science Results ALMA Detects Ethyl Cyanide on Titan ALMA detected C 2 H 5 CN in 27 rotational lines at 1.3mm – HC 3 N, CH 3 CN and CH 3 CCH simultaneously.
Imaging gaps in disks at mid-IR VLT VISIR image 8.6 PAH 11.3 PAH 19.8  m large grains => gap! Geers et al IRS48 -Gap seen in large grains, but NOT.
Leonardo Testi: Intermediate-Mass Star Formation, IAU Symp 221, Sydney, July 23, 2003 Formation and Early Evolution of Intermediate-Mass Stars  Intermediate-Mass.
Slide 1 (of 18) Circumstellar Disk Studies with the EVLA Carl Melis UCLA/LLNL In collaboration with: Gaspard Duchêne, Holly Maness, Patrick Palmer, and.
Direct imaging of substellar objects around young and nearby stars: The SACY sample N. Huélamo (Laeff-INTA, Spain) H. Bouy (UC Berkeley) C. Torres (LNA,
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
WITNESSING PLANET FORMATION WITH ALMA AND THE ELTs GMT TMTE-ELT Lucas Cieza, IfA/U. of Hawaii ABSTRACT: Over the last 15 years, astronomers have discovered.
Protostellar jets and outflows — what ALMA can achieve? — 平野 尚美 (Naomi Hirano) 中研院天文所 (ASIAA)
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
The Early Stages of Star Formation Leo Blitz UC Berkeley Space, Time and Life – August 26, 2002.
October 27, 2006US SKA, CfA1 The Square Kilometer Array and the “Cradle of Life” David Wilner (CfA)
Spitzer Constraints on Circumstellar Disk Evolution and Terrestrial Planet Formation Thayne Currie (CfA) Collaborators: Scott Kenyon (CfA), George Rieke.
1 Grain Growth in Protoplanetary Disks: the (Sub)Millimeter Sep 11, 2006 From Dust to Planetesimals, Ringberg David J. Wilner Harvard-Smithsonian Center.
“Where to Study Planet Formation? The Nearest, Youngest Stars” Eric Mamajek Harvard-Smithsonian Center for Astrophysics Space Telescope Science Institute.
Nichol Cunningham. Why? Massive stars are the building blocks of the universe. Continuously chemically enrich our galaxy. Release massive amounts of energy.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
Protoplanetary disk evolution and clearing Paola D’Alessio (CRYA) J. Muzerolle (Steward) C. Briceno (CIDA) A. Sicilia-Aguilar (MPI) L. Adame (UNAM) IRS.
Placing Our Solar System in Context with the Spitzer Space Telescope Michael R. Meyer Steward Observatory, The University of Arizona D. Backman (NASA-Ames,
Evolved Protoplanetary Disks: The Multiwavelength Picture Aurora Sicilia-Aguilar Th. Henning, J. Bouwman, A. Juhász, V. Roccatagliata, C. Dullemond, L.
The Birth of Stars and Planets in the Orion Nebula K. Smith (STScI)
The Formation & Evolution of Planetary Systems: Placing Our Solar System in Context Michael R. Meyer (Steward Observatory, The University of Arizona, P.I.)
The Formation & Evolution of Planetary Systems: Placing Our Solar System in Context Michael R. Meyer (Steward Observatory, The University of Arizona, P.I.)
PI Total time #CoIs, team Silvia Leurini 24h (ALMA, extended and compact configurations, APEX?) Menten, Schilke, Stanke, Wyrowski Disk dynamics in very.
Photoevaporation of Disks around Young Stars D. Hollenbach NASA Ames Research Center From Stars to Planets University of Florida April, 2007 Collaborators:
3D Hydrodynamics Simulations of Gravitational Instabilities in Irradiated Protoplanetary Disks – K. Cai et al. The Effects of Envelope Irradiation Irr.
High Dynamic Range Imaging and Spectroscopy of Circumstellar Disks Alycia Weinberger (Carnegie Institution of Washington) With lots of input from: Aki.
Leonardo Testi: Formation and Evolution of Brown Dwarfs, Stars in Galaxies, La Palma, Mar 8, 2003 Origin and Early Evolution of Brown Dwarfs Leonardo Testi,
Formation of stellar systems: The evolution of SED (low mass star formation) Class 0 –The core is cold, 20-30K Class I –An infrared excess appears Class.
1 ALMA View of Dust Evolution: Making Planets and Decoding Debris David J. Wilner (CfA) Grain Growth  Protoplanets  Debris.
Spitzer Constraints on Primordial and Debris Disk Evolution John Carpenter on behalf of the FEPS collaboration D. Backman (NASA-Ames) S. Beckwith (STScI)
A Planet’s Rocky Road to Success: Spitzer Observations of Debris Disks G. H. Rieke, for the MIPS team major contributors are Chas Beichman, Geoff Bryden,
Planet and Gaps in the disk
Protoplanetary discs of isolated VLMOs discovered in the IPHAS survey Luisa Valdivielso (IAC) lalalala Collaborators: E. Martín, H. Bouy,
Young planetary systems
Spatially Resolved Millimeter Observations of Pre-Main Sequence Binaries Jenny Patience Thanks Merci.
Probing CO freeze-out and desorption in protoplanetary disks
Disks Around Young Stars with ALMA & SPHEREx
Ge/Ay133 SED studies of disk “lifetimes” &
Evolution of Gas in Circumstellar Disks
Presentation transcript:

여 아란 Long-lived transition disk systems

The process of star formation (Source:SpitzerScienceCenter) Transition disks are Best for studying Planet Formation

Evidence of Inner hole/gap ? Clearing process due to planet formation The dynamical interaction of the disk with embedded planets (Skrutskie et al. 1990; Calvet et al. 2002) Evaporation by high-energy photons (Hollenbach et al. 1994; Clarke et al. 2001; Gorti & Hollenbach 2009) Brown et al. 2007, 2009 I. Indirect evidence : SED

Andrews et al II. Semi-direct evidence : dust emission images at 340 GHz Tau ? Sco-OB2 ? Per Oph TauOph Tau Lup Tau Oph Lyo et al CO(2-1)

Hillenbrand 2003 Long-lived transition disk systems ~8My-old η Chamaeleontis young stellar cluster “ Best sites to look for the young planets since core-accretion model for Jovian-mass planets requires timescales of ~10 Myr (Pollack et al. 1996)” ~140pc, 2-3Myr ~20-100pc, 8-10Myr

Southern Cross Eta Cha Cluster Eta Cha HD RS Cha Mamajek et al. 1999

Lyo et al. 2004a 1. Confirm their young age

Lyo et al. 2004b 2. Examine their spectral types : T FeH NaI KI TiO CaH

Lyo et al. 2004b Test Evolutionary models

3. Circumstellar disk study a) photometric study : disk fraction = 0.60 ± 0.13 L-band from 0.6m South Pole Infrared Explorer (SPIREX) telescope Lyo et al. 2003

Lawson et al b) Spectroscopic study : Accretion disk fraction = 0.27

4) Examine the disk structure : SED Disk fraction ~50% Gautier et al Sicilia-Aguilar et al. 2009

5) Direct Imaging : ALMA Submillimter continuum at 345GHz + molecular lines HD : 1.9±0.3 M Θ, R in = 140AU Casassus et al. 2013, Nature

An old disk still capable of forming a planetary system Bergin et al. 2013, Nature TW Hya : M disk ~ 0.05 M Θ