Fig. 16-12b 0.25 µm Origin of replicationDouble-stranded DNA molecule Parental (template) strand Daughter (new) strand Bubble Replication fork Two daughter.

Slides:



Advertisements
Similar presentations
Standard IV-2 DNA, RNA and Proteins
Advertisements

Molecular Genetics PaCES Summer Program in Environmental Science.
• Exam II Tuesday 5/10 – Bring a scantron with you!
5’ C 3’ OH (free) 1’ C 5’ PO4 (free) DNA is a linear polymer of nucleotide subunits joined together by phosphodiester bonds - covalent bonds between.
The Molecular Basis of Inheritance.  Used bacteriophages (viruses that infect bacteria)  Only made up of DNA and protein  Used phosphorus to “tag”
© 2010 Pearson Education, Inc. Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint ® Lectures for Campbell Essential Biology, Fourth Edition.
–DNA functions as the inherited directions for a cell or organism. –How are these directions carried out? Flow of Genetic Information Gene DNA RNA Protein.
Fig Overview Origin of replication Leading strand Lagging strand Overall directions of replication Leading strand Lagging strand Helicase Parental.
Chapter 10 – DNA, RNA, and Protein Synthesis
DNA, AND IN SOME CASES RNA, IS THE PRIMARY SOURCE OF HERITABLE INFORMATION DNA and RNA have structural similarities and differences that define function.
RNA Protein DNA Replication TranscriptionTranslation Polymerase Monomers DNA Pol III (and I) dNTPs Direction of synthesis 5’ to 3’ TemplatessDNA Product.
DNA Structure DNA Replication RNA Structure Transcription Translation
Gene Expression Chapter 13.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings.
The portion of the molecule in box 5 of Figure 12-1 is:
From Gene to Phenotype DNA molecule Gene 1 Gene 2 Gene 3 DNA strand (template) TRANSCRIPTION mRNA Protein TRANSLATION Amino acid A CCAAACCGAGT U G G U.
Fig Figure 16.1 How was the structure of DNA determined?
GENETIC CONTROL OF PROTEIN SYNTHESIS, CELL FUNCTION, AND CELL REPRODUCTION PART 1.
Chapter 16: The Molecular Basis of Inheritance (DNA)
16.2 DNA Replication.
© 2010 Pearson Education, Inc. Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint ® Lectures for Campbell Essential Biology, Fourth Edition.
Phage head Tail sheath Tail fiber DNA 100 nm Bacterial cell.
D.N.A. DeoxyriboNucleic Acid
Genetics in ~1920: 1. Cells have chromosomes Sketch of Drosophila chromosomes (Bridges, C. 1913)
Chapter 8 Microbial Genetics part A. Life in term of Biology –Growth of organisms Metabolism is the sum of all chemical reactions that occur in living.
DNA replication Chapter 16. Figure 16.1 History of DNA Griffith Mice & Strep Transformation External DNA taken in by cell.
Living S cells (control) Living R cells (control) Heat-killed S cells (control) Mixture of heat-killed S cells and living R cells Mouse dies Mouse healthy.
Bonus Trivia DNA Structure Translation Transcriptio n Replication
CELL REPRODUCTION: MITOSIS INTERPHASE: DNA replicates PROPHASE: Chromatin condenses into chromosomes, centrioles start migrating METAPHASE: chromosomes.
Chapter 10: DNA and RNA.
DNA The Molecule of Life. What is DNA? DeoxyriboNucleic Acid Chargaff’s Law A=T, G=C R. Franklin and M. Wilkins Crystal X-ray J Watson and F Crick Model.
RESULTS EXPERIMENT CONCLUSION Growth: Wild-type cells growing and dividing No growth: Mutant cells cannot grow and divide Minimal medium Classes of Neurospora.
BIO 2, Lecture 7 LIFE’S INFORMATION MOLECULE II: TRANSCRIPTION.
 British physician from the 20 th century  Studied patients with alkaptonuria › A genetic disorder which causes black urine, containing alkapton  Garrod’s.
DNA Replication Lecture 11 Fall Read pgs
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Protein Synthesis Review By PresenterMedia.com PresenterMedia.com.
AP Biology A A A A T C G C G T G C T Macromolecules: Nucleic Acids  Examples:  RNA (ribonucleic acid)  single helix  DNA (deoxyribonucleic acid)
DNA replication Chapter 16. Summary of history Griffith Mice & Strep Transformation External DNA taken in by cell.
Fig Fig Living S cells (control) Living R cells (control) Heat-killed S cells (control) Mixture of heat-killed S cells and living R cells.
AP Biology A A A A T C G C G T G C T Macromolecules: Nucleic Acids  Examples:  RNA (ribonucleic acid)  single helix  DNA (deoxyribonucleic acid)
CHAPTER 10 DNA REPLICATION & PROTEIN SYNTHESIS. DNA and RNA are polymers of nucleotides – The monomer unit of DNA and RNA is the nucleotide, containing.
Microbial Genetics Structure and Function of Genetic Material The Regulation of Bacterial Gene Expression Mutation: Change in Genetic Material Genetic.
1.DNA MOLECULES ARE LONG POLYMERS MADE UP OF REPEATING NUCLEOTIDES.
Bacterial Genetics In this lecture, we will talk about:  Bacterial chromosome:  Structure  Replication  Expression into proteins  Plasmids  Transposons.
DNA and RNA Structure of DNA Chromosomes and Replication Transcription and Translation Mutation and Gene Regulation.
8.2 KEY CONCEPT DNA structure is the same in all organisms.
Figure 16.5 The double helix. Figure 16.3 The structure of a DNA stand.
NUCLEIC ACIDS AND PROTEIN SYNTHESIS. DNA complex molecule contains the complete blueprint for every cell in every living thing Amount of DNA that would.
FIGURE 9.2 Pioneering scientists (a) James Watson and Francis Crick are pictured here with American geneticist Maclyn McCarty. Scientist Rosalind Franklin.
1. DNA, RNA structure 2. DNA replication 3. Transcription, translation.
The Molecular Basis of Inheritance
Chapter 17 From Gene to Protein.
The Structure of DNA and RNA
Chapter 10 – DNA, RNA, and Protein Synthesis
The Molecular Basis of Inheritance
Genetics.
Chapter 12 DNA and RNA.
DNA Replication 12-3.
Topic DNA.
Mixture of heat-killed S cells and living R cells
DNA, RNA, Protein Synthesis
Gene Activity How Genes Work.
Chapter 12 DNA and RNA.
Chapter 10 Agenda: Bellwork Posters Test Discussion Notes.
How is DNA replicated, ensuring consistency across generations?
Chapter 17 From Gene to Protein.
The Structure and Function of DNA Chapter 10
DNA replication Chapter 16.
Presentation transcript:

Fig b 0.25 µm Origin of replicationDouble-stranded DNA molecule Parental (template) strand Daughter (new) strand Bubble Replication fork Two daughter DNA molecules (b) Origins of replication in eukaryotes Eukaryotic replication

Fig Ends of parental DNA strands Leading strand Lagging strand Last fragment Previous fragment Parental strand RNA primer Removal of primers and replacement with DNA where a 3 end is available Second round of replication New leading strand New lagging strand Further rounds of replication Shorter and shorter daughter molecules

Fig Ends of parental DNA strands Leading strand Lagging strand Last fragment Previous fragment Parental strand RNA primer Removal of primers and replacement with DNA where a 3 end is available Second round of replication New leading strand New lagging strand Further rounds of replication Shorter and shorter daughter molecules

Fig µm Staining of telomeres Florescence In Situ Hybridization (FISH) “probe” = (5’-CTAACC-3’) 100

08_Figure37.jpg

Fig. 16-7a Hydrogen bond 3 end 5 end 3.4 nm 0.34 nm 3 end 5 end (b) Partial chemical structure(a) Key features of DNA structure 1 nm

Fig a DNA double helix (2 nm in diameter) Nucleosome (10 nm in diameter) Histones Histone tail H1 DNA, the double helixHistones Nucleosomes, or “beads on a string” (10-nm fiber)

Fig b 30-nm fiber Chromatid (700 nm) LoopsScaffold 300-nm fiber Replicated chromosome (1,400 nm) 30-nm fiber Looped domains (300-nm fiber) Metaphase chromosome

What are genes? DNA How do genes work? Mutant phenotypes Short aristae Black body Cinnabar eyes Vestigial wings Brown eyes

What are genes? DNA How do genes work? Garrod -“Inborn errors of metabolism in man” e.g. Alkaptonuria: presence of alkapton in urine due to lack of enzyme -underappreciated at the time…. A gene specifies the action of an enzyme (The “one-gene, one-enzyme” hypothesis) Beadle and Tatum - Genetic studies in Bread Mold (Neurospora) show that biochemical reactions are controlled by genes

Complete media (contains amino acids, nucleotides, vitamins, etc.) Minimal Media (lacks amino acids, nucleotides, vitamins, etc.) Wild type Neurospora grows on minimal media

Complete media 1.X-rays 2.Set up 1000 multiple single spore cultures (in complete media) A B C wt

Complete media Minimal Media 1.X-rays 2.Set up 1000 multiple single spore cultures (in complete media) 3.Test each for growth on minimal media wt Complete media A B C A B C Min. media

1.X-rays 2.Set up 1000 multiple single spore cultures (in complete media) 3.Test each for growth on minimal media 4.Retest on minimal media plus one component A A A A A A A +His+Leu +Arg +Asp+Glu +Asn A A +Lys +Gln Min. media A A +Trp +Tyr A A +Phe +Gly Min. media A A A +Ser+Thr +Met A +Ile Min. media A +Ala A +Pro Min. media A A +Val +Cys Min. media

Fig. 17-2c CONCLUSION Class I mutants (mutation in gene A) Class II mutants (mutation in gene B) Class III mutants (mutation in gene C) Wild type Precursor Enzyme A Ornithine Enzyme B Citrulline Enzyme C Arginine Gene A Gene B Gene C Multiple enzymes are required for arginine biosynthesis

Fig. 17-2c CONCLUSION Class I mutants (mutation in gene A) Class II mutants (mutation in gene B) Class III mutants (mutation in gene C) Wild type Precursor Enzyme A Ornithine Enzyme B Citrulline Enzyme C Arginine Gene A Gene B Gene C Multiple enzymes are required for arginine biosynthesis If we have an Arg requiring mutant, which gene is affected?

Fig. 17-2b RESULTS Classes of Neurospora crassa Wild type Class I mutantsClass II mutants Class III mutants Minimal medium (MM) (control) MM + ornithine MM + citrulline MM + arginine (control) Condition

Fig. 17-2c CONCLUSION Class I mutants (mutation in gene A) Class II mutants (mutation in gene B) Class III mutants (mutation in gene C) Wild type Precursor Enzyme A Ornithine Enzyme B Citrulline Enzyme C Arginine Gene A Gene B Gene C

RNA Protein DNA Replication TranscriptionTranslation

Fig. 17-3a-1 TRANSCRIPTION DNA mRNA (a) Bacterial cell

Fig. 17-3a-2 (a) Bacterial cell TRANSCRIPTION DNA mRNA TRANSLATION Ribosome Polypeptide

ATGACCATGATTACGGATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCAC ATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTT TGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGG CAGATGCACGGTTACGATGCGCCCATCTACACCAACGTGACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGG GTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGCGTTAACTCGGCGTTTCA TCTGTGGTGCAACGGGCGCTGGGTCGGTTACGGCCAGGACAGTCGTTTGCCGTCTGAATTTGACCTGAGCGCATTTTTACGCGCCGGAGAA AACCGCCTCGCGGTGATGGTGCTGCGCTGGAGTGACGGCAGTTATCTGGAAGATCAGGATATGTGGCGGATGAGCGGCATTTTCCGTGACG TCTCGTTGCTGCATAAACCGACTACACAAATCAGCGATTTCCATGTTGCCACTCGCTTTAATGATGATTTCAGCCGCGCTGTACTGGAGGC TGAAGTTCAGATGTGCGGCGAGTTGCGTGACTACCTACGGGTAACAGTTTCTTTATGGCAGGGTGAAACGCAGGTCGCCAGCGGCACCGCG CCTTTCGGCGGTGAAATTATCGATGAGCGTGGTGGTTATGCCGATCGCGTCACACTACGTCTGAACGTCGAAAACCCGAAACTGTGGAGCG CCGAAATCCCGAATCTCTATCGTGCGGTGGTTGAACTGCACACCGCCGACGGCACGCTGATTGAAGCAGAAGCCTGCGATGTCGGTTTCCG CGAGGTGCGGATTGAAAATGGTCTGCTGCTGCTGAACGGCAAGCCGTTGCTGATTCGAGGCGTTAACCGTCACGAGCATCATCCTCTGCAT GGTCAGGTCATGGATGAGCAGACGATGGTGCAGGATATCCTGCTGATGAAGCAGAACAACTTTAACGCCGTGCGCTGTTCGCATTATCCGA ACCATCCGCTGTGGTACACGCTGTGCGACCGCTACGGCCTGTATGTGGTGGATGAAGCCAATATTGAAACCCACGGCATGGTGCCAATGAA TCGTCTGACCGATGATCCGCGCTGGCTACCGGCGATGAGCGAACGCGTAACGCGAATGGTGCAGCGCGATCGTAATCACCCGAGTGTGATC ATCTGGTCGCTGGGGAATGAATCAGGCCACGGCGCTAATCACGACGCGCTGTATCGCTGGATCAAATCTGTCGATCCTTCCCGCCCGGTGC AGTATGAAGGCGGCGGAGCCGACACCACGGCCACCGATATTATTTGCCCGATGTACGCGCGCGTGGATGAAGACCAGCCCTTCCCGGCTGT GCCGAAATGGTCCATCAAAAAATGGCTTTCGCTACCTGGAGAGACGCGCCCGCTGATCCTTTGCGAATACGCCCACGCGATGGGTAACAGT CTTGGCGGTTTCGCTAAATACTGGCAGGCGTTTCGTCAGTATCCCCGTTTACAGGGCGGCTTCGTCTGGGACTGGGTGGATCAGTCGCTGA TTAAATATGATGAAAACGGCAACCCGTGGTCGGCTTACGGCGGTGATTTTGGCGATACGCCGAACGATCGCCAGTTCTGTATGAACGGTCT GGTCTTTGCCGACCGCACGCCGCATCCAGCGCTGACGGAAGCAAAACACCAGCAGCAGTTTTTCCAGTTCCGTTTATCCGGGCAAACCATC GAAGTGACCAGCGAATACCTGTTCCGTCATAGCGATAACGAGCTCCTGCACTGGATGGTGGCGCTGGATGGTAAGCCGCTGGCAAGCGGTG AAGTGCCTCTGGATGTCGCTCCACAAGGTAAACAGTTGATTGAACTGCCTGAACTACCGCAGCCGGAGAGCGCCGGGCAACTCTGGCTCAC AGTACGCGTAGTGCAACCGAACGCGACCGCATGGTCAGAAGCCGGGCACATCAGCGCCTGGCAGCAGTGGCGTCTGGCGGAAAACCTCAGT GTGACGCTCCCCGCCGCGTCCCACGCCATCCCGCATCTGACCACCAGCGAAATGGATTTTTGCATCGAGCTGGGTAATAAGCGTTGGCAAT TTAACCGCCAGTCAGGCTTTCTTTCACAGATGTGGATTGGCGATAAAAAACAACTGCTGACGCCGCTGCGCGATCAGTTCACCCGTGCACC GCTGGATAACGACATTGGCGTAAGTGAAGCGACCCGCATTGACCCTAACGCCTGGGTCGAACGCTGGAAGGCGGCGGGCCATTACCAGGCC GAAGCAGCGTTGTTGCAGTGCACGGCAGATACACTTGCTGATGCGGTGCTGATTACGACCGCTCACGCGTGGCAGCATCAGGGGAAAACCT TATTTATCAGCCGGAAAACCTACCGGATTGATGGTAGTGGTCAAATGGCGATTACCGTTGATGTTGAAGTGGCGAGCGATACACCGCATCC GGCGCGGATTGGCCTGAACTGCCAGCTGGCGCAGGTAGCAGAGCGGGTAAACTGGCTCGGATTAGGGCCGCAAGAAAACTATCCCGACCGC CTTACTGCCGCCTGTTTTGACCGCTGGGATCTGCCATTGTCAGACATGTATACCCCGTACGTCTTCCCGAGCGAAAACGGTCTGCGCTGCG GGACGCGCGAATTGAATTATGGCCCACACCAGTGGCGCGGCGACTTCCAGTTCAACATCAGCCGCTACAGTCAACAGCAACTGATGGAAAC CAGCCATCGCCATCTGCTGCACGCGGAAGAAGGCACATGGCTGAATATCGACGGTTTCCATATGGGGATTGGTGGCGACGACTCCTGGAGC CCGTCAGTATCGGCGGAATTCCAGCTGAGCGCCGGTCGCTACCATTACCAGTTGGTCTGGTGTCAAAAATAA E. Coli LacZ DNA sequence (1 strand shown) base pairs

AUGACCAUGAUUACGGAUUCACUGGCCGUCGUUUUACAACGUCGUGACUGGGAAAACCCUGGCGUUACCCAACUUAAUCGCCUUGCAGCAC AUCCCCCUUUCGCCAGCUGGCGUAAUAGCGAAGAGGCCCGCACCGAUCGCCCUUCCCAACAGUUGCGCAGCCUGAAUGGCGAAUGGCGCUU UGCCUGGUUUCCGGCACCAGAAGCGGUGCCGGAAAGCUGGCUGGAGUGCGAUCUUCCUGAGGCCGAUACUGUCGUCGUCCCCUCAAACUGG CAGAUGCACGGUUACGAUGCGCCCAUCUACACCAACGUGACCUAUCCCAUUACGGUCAAUCCGCCGUUUGUUCCCACGGAGAAUCCGACGG GUUGUUACUCGCUCACAUUUAAUGUUGAUGAAAGCUGGCUACAGGAAGGCCAGACGCGAAUUAUUUUUGAUGGCGUUAACUCGGCGUUUCA UCUGUGGUGCAACGGGCGCUGGGUCGGUUACGGCCAGGACAGUCGUUUGCCGUCUGAAUUUGACCUGAGCGCAUUUUUACGCGCCGGAGAA AACCGCCUCGCGGUGAUGGUGCUGCGCUGGAGUGACGGCAGUUAUCUGGAAGAUCAGGAUAUGUGGCGGAUGAGCGGCAUUUUCCGUGACG UCUCGUUGCUGCAUAAACCGACUACACAAAUCAGCGAUUUCCAUGUUGCCACUCGCUUUAAUGAUGAUUUCAGCCGCGCUGUACUGGAGGC UGAAGUUCAGAUGUGCGGCGAGUUGCGUGACUACCUACGGGUAACAGUUUCUUUAUGGCAGGGUGAAACGCAGGUCGCCAGCGGCACCGCG CCUUUCGGCGGUGAAAUUAUCGAUGAGCGUGGUGGUUAUGCCGAUCGCGUCACACUACGUCUGAACGUCGAAAACCCGAAACUGUGGAGCG CCGAAAUCCCGAAUCUCUAUCGUGCGGUGGUUGAACUGCACACCGCCGACGGCACGCUGAUUGAAGCAGAAGCCUGCGAUGUCGGUUUCCG CGAGGUGCGGAUUGAAAAUGGUCUGCUGCUGCUGAACGGCAAGCCGUUGCUGAUUCGAGGCGUUAACCGUCACGAGCAUCAUCCUCUGCAU GGUCAGGUCAUGGAUGAGCAGACGAUGGUGCAGGAUAUCCUGCUGAUGAAGCAGAACAACUUUAACGCCGUGCGCUGUUCGCAUUAUCCGA ACCAUCCGCUGUGGUACACGCUGUGCGACCGCUACGGCCUGUAUGUGGUGGAUGAAGCCAAUAUUGAAACCCACGGCAUGGUGCCAAUGAA UCGUCUGACCGAUGAUCCGCGCUGGCUACCGGCGAUGAGCGAACGCGUAACGCGAAUGGUGCAGCGCGAUCGUAAUCACCCGAGUGUGAUC AUCUGGUCGCUGGGGAAUGAAUCAGGCCACGGCGCUAAUCACGACGCGCUGUAUCGCUGGAUCAAAUCUGUCGAUCCUUCCCGCCCGGUGC AGUAUGAAGGCGGCGGAGCCGACACCACGGCCACCGAUAUUAUUUGCCCGAUGUACGCGCGCGUGGAUGAAGACCAGCCCUUCCCGGCUGU GCCGAAAUGGUCCAUCAAAAAAUGGCUUUCGCUACCUGGAGAGACGCGCCCGCUGAUCCUUUGCGAAUACGCCCACGCGAUGGGUAACAGU CUUGGCGGUUUCGCUAAAUACUGGCAGGCGUUUCGUCAGUAUCCCCGUUUACAGGGCGGCUUCGUCUGGGACUGGGUGGAUCAGUCGCUGA UUAAAUAUGAUGAAAACGGCAACCCGUGGUCGGCUUACGGCGGUGAUUUUGGCGAUACGCCGAACGAUCGCCAGUUCUGUAUGAACGGUCU GGUCUUUGCCGACCGCACGCCGCAUCCAGCGCUGACGGAAGCAAAACACCAGCAGCAGUUUUUCCAGUUCCGUUUAUCCGGGCAAACCAUC GAAGUGACCAGCGAAUACCUGUUCCGUCAUAGCGAUAACGAGCUCCUGCACUGGAUGGUGGCGCUGGAUGGUAAGCCGCUGGCAAGCGGUG AAGUGCCUCUGGAUGUCGCUCCACAAGGUAAACAGUUGAUUGAACUGCCUGAACUACCGCAGCCGGAGAGCGCCGGGCAACUCUGGCUCAC AGUACGCGUAGUGCAACCGAACGCGACCGCAUGGUCAGAAGCCGGGCACAUCAGCGCCUGGCAGCAGUGGCGUCUGGCGGAAAACCUCAGU GUGACGCUCCCCGCCGCGUCCCACGCCAUCCCGCAUCUGACCACCAGCGAAAUGGAUUUUUGCAUCGAGCUGGGUAAUAAGCGUUGGCAAU UUAACCGCCAGUCAGGCUUUCUUUCACAGAUGUGGAUUGGCGAUAAAAAACAACUGCUGACGCCGCUGCGCGAUCAGUUCACCCGUGCACC GCUGGAUAACGACAUUGGCGUAAGUGAAGCGACCCGCAUUGACCCUAACGCCUGGGUCGAACGCUGGAAGGCGGCGGGCCAUUACCAGGCC GAAGCAGCGUUGUUGCAGUGCACGGCAGAUACACUUGCUGAUGCGGUGCUGAUUACGACCGCUCACGCGUGGCAGCAUCAGGGGAAAACCU UAUUUAUCAGCCGGAAAACCUACCGGAUUGAUGGUAGUGGUCAAAUGGCGAUUACCGUUGAUGUUGAAGUGGCGAGCGAUACACCGCAUCC GGCGCGGAUUGGCCUGAACUGCCAGCUGGCGCAGGUAGCAGAGCGGGUAAACUGGCUCGGAUUAGGGCCGCAAGAAAACUAUCCCGACCGC CUUACUGCCGCCUGUUUUGACCGCUGGGAUCUGCCAUUGUCAGACAUGUAUACCCCGUACGUCUUCCCGAGCGAAAACGGUCUGCGCUGCG GGACGCGCGAAUUGAAUUAUGGCCCACACCAGUGGCGCGGCGACUUCCAGUUCAACAUCAGCCGCUACAGUCAACAGCAACUGAUGGAAAC CAGCCAUCGCCAUCUGCUGCACGCGGAAGAAGGCACAUGGCUGAAUAUCGACGGUUUCCAUAUGGGGAUUGGUGGCGACGACUCCUGGAGC CCGUCAGUAUCGGCGGAAUUCCAGCUGAGCGCCGGUCGCUACCAUUACCAGUUGGUCUGGUGUCAAAAAUAA E. Coli LacZ RNA sequence nucleotides

MTMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQQLRSLNGEWRFAWFPAPEAVPESWLECDLPEADTVVVPSNW QMHGYDAPIYTNVTYPITVNPPFVPTENPTGCYSLTFNVDESWLQEGQTRIIFDGVNSAFHLWCNGRWVGYGQDSRLPSEFDLSAFLRAGE NRLAVMVLRWSDGSYLEDQDMWRMSGIFRDVSLLHKPTTQISDFHVATRFNDDFSRAVLEAEVQMCGELRDYLRVTVSLWQGETQVASGTA PFGGEIIDERGGYADRVTLRLNVENPKLWSAEIPNLYRAVVELHTADGTLIEAEACDVGFREVRIENGLLLLNGKPLLIRGVNRHEHHPLH GQVMDEQTMVQDILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANIETHGMVPMNRLTDDPRWLPAMSERVTRMVQRDRNHPSVI IWSLGNESGHGANHDALYRWIKSVDPSRPVQYEGGGADTTATDIICPMYARVDEDQPFPAVPKWSIKKWLSLPGETRPLILCEYAHAMGNS LGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENGNPWSAYGGDFGDTPNDRQFCMNGLVFADRTPHPALTEAKHQQQFFQFRLSGQTI EVTSEYLFRHSDNELLHWMVALDGKPLASGEVPLDVAPQGKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISAWQQWRLAENLS VTLPAASHAIPHLTTSEMDFCIELGNKRWQFNRQSGFLSQMWIGDKKQLLTPLRDQFTRAPLDNDIGVSEATRIDPNAWVERWKAAGHYQA EAALLQCTADTLADAVLITTAHAWQHQGKTLFISRKTYRIDGSGQMAITVDVEVASDTPHPARIGLNCQLAQVAERVNWLGLGPQENYPDR LTAACFDRWDLPLSDMYTPYVFPSENGLRCGTRELNYGPHQWRGDFQFNISRYSQQQLMETSHRHLLHAEEGTWLNIDGFHMGIGGDDSWS PSVSAEFQLSAGRYHYQLVWCQK E. Coli LacZ protein sequence – 1024 amino acids

Fig Second mRNA base First mRNA base (5 end of codon) Third mRNA base (3 end of codon)

Beta-galactosidase protein (E. coli)LacZ (Beta-galactosidase) gene (DNA) LacZ mRNA

ATGAAATTTACCGTAGAACGTGAGCATTTATTAAAACCGCTACAACAGGTGAGCGGTCCGTTAGGTGGTCGTCCTACGCTA CCGATTCTCGGTAATCTGCTGTTACAGGTTGCTGACGGTACGTTGTCGCTGACCGGTACTGATCTCGAGATGGAAATGGTG GCACGTGTTGCGCTGGTTCAGCCACACGAGCCAGGAGCGACGACCGTTCCGGCGCGCAAATTCTTTGATATCTGCCGTGGT CTGCCTGAAGGCGCGGAAATTGCCGTGCAGCTGGAAGGTGAACGGATGCTGGTACGCTCCGGGCGTAGCCGTTTTTCGCTG TCTACCCTGCCAGCGGCGGATTTCCCGAACCTCGATGACTGGCAGAGTGAAGTCGAATTTACCCTGCCGCAGGCAACGATG AAGCGTCTGATTGAAGCGACCCAGTTTTCTATGGCGCATCAGGACGTTCGCTATTACTTAAATGGTATGCTGTTTGAAACC GAAGGTGAAGAACTGCGCACCGTGGCAACCGACGGCCACCGTCTGGCGGTCTGTTCAATGCCAATTGGTCAATCTTTGCCA AGCCATTCGGTGATCGTACCGCGTAAAGGCGTGATTGAACTGATGCGTATGCTCGACGGCGGCGACAATCCGCTGCGCGTA CAGATTGGCAGCAACAACATTCGCGCCCACGTTGGCGACTTTATCTTCACCTCCAAACTGGTGGATGGTCGCTTCCCGGAT TATCGCCGCGTTCTGCCGAAGAACCCGGACAAACATCTGGAAGCTGGCTGCGATCTGCTCAAGCAGGCGTTTGCTCGCGCG GCGATTCTCTCTAACGAGAAATTCCGCGGCGTACGTCTTTATGTCAGCGAAAACCAGCTGAAAATCACCGCCAACAACCCG GAACAGGAAGAAGCGGAAGAGATCCTCGACGTTACCTATAGCGGTGCGGAGATGGAAATCGGCTTCAACGTCAGTTATGTG CTGGATGTTCTGAACGCGCTGAAATGCGAAAACGTCCGCATGATGCTGACCGATTCGGTTTCCAGCGTGCAGATTGAAGAT GCGGCCAGCCAGAGCGCGGCTTATGTTGTCATGCCAATGAGACTGTAA E. Coli Sliding Clamp DNA sequence (1 strand shown) base pairs E. Coli Sliding Clamp Protein sequence- 366 amino acids MKFTVEREHLLKPLQQVSGPLGGRPTLPILGNLLLQVADGTLSLTGTDLEMEMVARVALVQPHEPGATTVPARKFFDICRGLPEGAEIAVQLE GERMLVRSGRSRFSLSTLPAADFPNLDDWQSEVEFTLPQATMKRLIEATQFSMAHQDVRYYLNGMLFETEGEELRTVATDGHRLAVCSMPI GQSLPSHSVIVPRKGVIELMRMLDGGDNPLRVQIGSNNIRAHVGDFIFTSKLVDGRFPDYRRVLPKNPDKHLEAGCDLLKQAFARAAILSNEK FRGVRLYVSENQLKITANNPEQEEAEEILDVTYSGAEMEIGFNVSYVLDVLNALKCENVRMMLTDSVSSVQIEDAASQSAAYVVMPMRL

Fig b Origin of replication RNA primer “Sliding clamp” DNA pol III Parental DNA

Sliding clamp protein (E. coli)- shown with DNA double helix

Fig DNA molecule Gene 1 Gene 2 Gene 3 DNA template strand TRANSCRIPTION TRANSLATION mRNA Protein Codon Amino acid

Fig. 5-27c-2 Ribose (in RNA)Deoxyribose (in DNA) Sugars (c) Nucleoside components: sugars

Fig. 5-27c-1 (c) Nucleoside components: nitrogenous bases Purines Guanine (G) Adenine (A) Cytosine (C) Thymine (T, in DNA)Uracil (U, in RNA) Nitrogenous bases Pyrimidines

Fig Sugar–phosphate backbone 5 end Nitrogenous bases Thymine (T) Adenine (A) Cytosine (C) Guanine (G) DNA nucleotide Sugar (deoxyribose) 3 end Phosphate Chemical structure of DNA

Fig Sugar–phosphate backbone 5 end Nitrogenous bases Thymine (T) Adenine (A) Cytosine (C) Guanine (G) DNA nucleotide Sugar (deoxyribose) 3 end Phosphate Uracil (U) OH RNA Chemical structure of RNA -ribose instead of deoxyribose Uracil instead of thymine Cytosine (C)

RNA Protein DNA Replication TranscriptionTranslation Polymerase Monomers DNA Pol III (and I) dNTPs Direction of synthesis 5’ to 3’ TemplatessDNA Product polynucleotid e

RNA Protein DNA Replication TranscriptionTranslation Polymerase Monomers DNA Pol III (and I) RNA Pol dNTPsNTPs Direction of synthesis 5’ to 3’ TemplatessDNA Product polynucleotid e

Fig. 17-7a-1 Promoter Transcription unit DNA Start point RNA polymerase

Fig. 17-7a-2 Promoter Transcription unit DNA Start point RNA polymerase Initiation RNA transcript 5 5 Unwound DNA Template strand of DNA

Fig. 17-7a-3 Promoter Transcription unit DNA Start point RNA polymerase Initiation RNA transcript 5 5 Unwound DNA Template strand of DNA 2 Elongation Rewound DNA RNA transcript

Fig. 17-7a-4 Promoter Transcription unit DNA Start point RNA polymerase Initiation RNA transcript 5 5 Unwound DNA Template strand of DNA 2 Elongation Rewound DNA RNA transcript 3 Termination Completed RNA transcript

Fig. 17-7b Elongation RNA polymerase Nontemplate strand of DNA RNA nucleotides 3' end Direction of transcription (“downstream”) Template strand of DNA Newly made RNA 3' 5'

Fig A eukaryotic promoter includes a TATA box Promoter TATA box Start point Template DNA strand Transcription factors Several transcription factors must bind to the DNA before RNA polymerase II can do so Additional transcription factors bind to the DNA along with RNA polymerase II, forming the transcription initiation complex. RNA polymerase II Transcription factors RNA transcript Transcription initiation complex

RNA Protein DNA Replication TranscriptionTranslation Polymerase Monomers DNA Pol III (and I) RNA Pol dNTPsNTPs Direction of synthesis 5’ to 3’ TemplatessDNA Product polynucleotid e