Christian Beer, CE-IP Crete 2006 Mean annual GPP of Europe derived from its water balance Christian Beer 1, Markus Reichstein 1, Philippe Ciais 2, Graham.

Slides:



Advertisements
Similar presentations
Regional trends in the land carbon cycle and the underlying mechanisms over the period, S. Sitch, P. Friedlingstein, G. Bonan, P. Canadell, P.
Advertisements

Study on Carbon Budget for Ecosystems of China: Aspects and Progress Yao Huang Institute of Atmospheric Physics Chinese Academy.
TEMPORAL VARIABILITY AND DRIVERS OF NET ECOSYSTEM PRODUCTION OF A TURKEY OAK (QUERCUS CERRIS L.) FOREST IN ITALY UNDER COPPICE MANAGEMENT Luca Belelli.
DGVM runs for Trendy/RECCAP S. Sitch, P. Friedlingstein, A. Ahlström, A. Arneth, G. Bonan, P. Canadell, F. Chevallier, P. Ciais, C. Huntingford, C. D.,
Improving Understanding of Global and Regional Carbon Dioxide Flux Variability through Assimilation of in Situ and Remote Sensing Data in a Geostatistical.
The C budget of Japan: Ecosystem Model (TsuBiMo) Y. YAMAGATA and G. ALEXANDROV Climate Change Research Project, National Institute for Environmental Studies,
Monitoring Effects of Interannual Variation in Climate and Fire Regime on Regional Net Ecosystem Production with Remote Sensing and Modeling D.P. Turner.
Niall P. Hanan 1, Christopher A. Williams 1, Joseph Berry 2, Robert Scholes 3 A. Scott Denning 1, Jason Neff 4, and Jeffrey Privette 5 1. Colorado State.
Management impacts on the C balance in agricultural ecosystems Jean-François Soussana 1 Martin Wattenbach 2, Pete Smith 2 1. INRA, Clermont-Ferrand, France.
03/06/2015 Modelling of regional CO2 balance Tiina Markkanen with Tuula Aalto, Tea Thum, Jouni Susiluoto and Niina Puttonen.
Prabir K. Patra Acknowledgments: S. Maksyutov, K. Gurney and TransCom-3 modellers TransCom Meeting, Paris; June 2005 Sensitivity CO2 sources and.
Biosphere Modeling Galina Churkina MPI for Biogeochemistry.
NESTED GLOBAL INVERSION WITH A FOCUS ON NORTH AMERICA: COMPARISON WITH BOTTOM-UP RESULTS IN CANADA Jing M. Chen, University of Toronto Main Contributors:
NOCES meeting Plymouth, 2005 June Top-down v.s. bottom-up estimates of air-sea CO 2 fluxes : No winner so far … P. Bousquet, A. Idelkadi, C. Carouge,
Raw data Hz HH data submitted for synthesis Flux calculation, raw data filtering Additional filtering for footprint or instrument malfunctioning.
Trends in Terrestrial Carbon Sinks Driven by Hydroclimatic Change since 1948: Data-Driven Analysis using FLUXNET Trends in Terrestrial Carbon Sinks Driven.
with contributions of 40+ research groups
Optimising ORCHIDEE simulations at tropical sites Hans Verbeeck LSM/FLUXNET meeting June 2008, Edinburgh LSCE, Laboratoire des Sciences du Climat et de.
Laboratoire des Sciences du Climat et de l'Environnement P. Peylin, C. Bacour, P. Ciais, H. Verbeek, P. Rayner Flux data to highlight model deficiencies.
ICDC7, Boulder, September 2005 CH 4 TOTAL COLUMNS FROM SCIAMACHY – COMPARISON WITH ATMOSPHERIC MODELS P. Bergamaschi 1, C. Frankenberg 2, J.F. Meirink.
Meta-analysis of eddy covariance carbon fluxes data Dario Papale, Markus Reichstein, Riccardo Valentini Marc Aubinet, Christian Bernhofer, Alessandro Cescatti,
An empirical model of stand GPP with LUE approach: analysis of eddy covariance data at several contrasting sites A. Mäkelä 1, M. Pulkkinen 1, P. Kolari.
FLUXNET: Measuring CO 2 and Water Vapor Fluxes Across a Global Network Dennis Baldocchi ESPM/Ecosystem Science Div. University of California, Berkeley.
The role of the Chequamegon Ecosystem-Atmosphere Study in the U.S. Carbon Cycle Science Plan Ken Davis The Pennsylvania State University The 13 th ChEAS.
CarboEurope, IMECC and GHG- Europe Mike Jones School of Natural Sciences Trinity College Dublin.
The Big Picture To assess the Global Carbon Budget we need information that is ‘Everywhere, All of the Time’ Many Complementary Methods exist, Each with.
Integrating Remote Sensing, Flux Measurements and Ecosystem Models Faith Ann Heinsch Numerical Terradynamic Simulation Group (NTSG) University of Montana.
Modeling the Greenhouse gases of cropland/grassland At European scale N. Viovy, S. Gervois, N. Vuichard, N. de Noblet-Ducoudré, B. Seguin, N. Brisson,
Reducing Canada's vulnerability to climate change - ESS J28 Earth Science for National Action on Climate Change Canada Water Accounts AET estimates for.
The use of δ 18 O in atmospheric CO 2 Matthias Cuntz Research School of Biological Sciences (RSBS), ANU, Canberra, Australia Philippe Ciais, Georg Hoffmann,
On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling Markus Reichstein, Dario Papale Biogeochemical Model-Data-Integration.
Integration of biosphere and atmosphere observations Yingping Wang 1, Gabriel Abramowitz 1, Rachel Law 1, Bernard Pak 1, Cathy Trudinger 1, Ian Enting.
AFFILIATIONS 1 Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry; 2 German Centre for Integrative Biodiversity Research.
Carbon sequestration due to the abandonment of croplands in the former USSR since 1990 Nicolas VUICHARD (1) Luca BELELLI (1) Irina KURGANOVA (2) Philippe.
Satellite data, ecosystem models and site data: contributions of the IGBP flux network to carbon cycle science David Schimel, Galina Churkina, Eva Falge,
Ecosystem component Activity 1.6 Grasslands and wetlands Jean-François Soussana Katja Klumpp, Nicolas Vuichard INRA, Clermont-Ferrand, France CarboEurope,
Flux observation: Integrating fluxes derived from ground station and satellite remote sensing 王鹤松 Hesong Wang Institute of atmospheric physics, Chinese.
Ecosystem component Activity 1.6 Grasslands and wetlands Jean-François Soussana Katja Klumpp, Nicolas Vuichard INRA, Clermont-Ferrand, France CarboEurope,
Terrestrial Carbon Observations TCO Previous Strategy 1- better identify the potential end users, and their requirements 2- organize and coordinate reliable.
Quantitative network design for biosphere model process parameters E. Koffi 1, P. Rayner 1, T. Kaminski 2, M. Scholze 3, M. Voßbeck 2, and R. Giering 2.
Variations in Continental Terrestrial Primary Production, Evapotranspiration and Disturbance Faith Ann Heinsch, Maosheng Zhao, Qiaozhen Mu, David Mildrexler,
Using a Global Flux Network—FLUXNET— to Study the Breathing of the Terrestrial Biosphere Dennis Baldocchi ESPM/Ecosystem Science Div. University of California,
Scientific Advisory Committee Meeting, November 25-26, 2002 Dr. Daniela Jacob Regional climate modelling Daniela Jacob.
Surface conductance and evaporation from 1- km to continental scales using remote sensing Ray Leuning, Yonqiang Zhang, Amelie Rajaud, Helen Cleugh, Francis.
Goal: to understand carbon dynamics in montane forest regions by developing new methods for estimating carbon exchange at local to regional scales. Activities:
Evapotranspiration Estimates over Canada based on Observed, GR2 and NARR forcings Korolevich, V., Fernandes, R., Wang, S., Simic, A., Gong, F. Natural.
CarboEurope: The Big Research Lines Annette Freibauer Ivan Janssens.
Chronosequence of soil respiration in ChEAS sites (sub-topic of spatial upscaling of carbon measurement) Jim Tang Department of Forest Resources University.
Fluxnet 2009 Progress Dennis Baldocchi, Rodrigo Vargas, Youngryel Ryu, Markus Reichstein, Dario Papale, Deb Agarwal, Catharine Van Ingen AmeriFlux 2009.
Age effects of annual carbon fluxes: Ongoing synthesis work
CFusion and NCEO. NCEO Components Ciais et al IGOS-P Integrated Global Carbon Observing Strategy Global Carbon Data Assimilation System.
Ecosystems component – Cropland Activity Pete Smith & Martin Wattenbach Professor of Soils & Global Change School of Biological Sciences, University of.
Slide -1 (Announcement) Breakout group “Against physical degradation of scientists” Where? Soccer field of Kalimera Hotel When? Friday, 5 pm (after plenary)
Dr. Monia Santini University of Tuscia and CMCC CMCC Annual Meeting
Success and Failure of Implementing Data-driven Upscaling Using Flux Networks and Remote Sensing Jingfeng Xiao Complex Systems Research Center, University.
FLUXNET synthesis: the data 932 site years from 246 sites (i.e. 50% more than in February) Available to colleagues involved in proposals at
Terrestrial Ecosystems Monitoring Sites (TEMS) Who, what, where International on-line directory of monitoring sites and networks carrying out long-term.
Data assimilation in C cycle science Strand 2 Team.
Whats new with MODIS NPP and GPP MODIS/VIIRS Science Team Meeting May 20, 2015 Steven W. Running Numerical Terradynamic Simulation Group College of Forestry.
1 Co-ordinator: Detlef Schulze (MPI for Biogeochemistry) Component Leaders: Riccardo Valentini, Philippe Ciais, Han Dolman, Martin Heimann, John Grace.
Yan Sun Advisor: Professor Shilong Piao College of Urban and Environment Sciences, Peking University PKU-LSCE meeting, 15 MAY 2014 Water-use Efficiency.
Figure 10. Improvement in landscape resolution that the new 250-meter MODIS (Moderate Resolution Imaging Spectroradiometer) measurement of gross primary.
Influence of tree crown parameters on the seasonal CO2-exchange of a pine forest in Brasschaat, Belgium. Jelle Hofman Promotor: Dr. Sebastiaan Luyssaert.
CO2 sources and sinks in China as seen from the global atmosphere
Marcos Heil Costa Universidade Federal de Viçosa
Adam Butler & Glenn Marion, Biomathematics & Statistics Scotland •
Ensemble Ecosystem Model Experiment and Intercomparison using the Terrestrial Observation and Prediction System (TOPS) Weile Wang, Jennifer L. Dungan,
Coherence of parameters governing NEE variability in eastern U. S
EC Workshop on European Water Scenarios Brussels 30 June 2003
Presentation transcript:

Christian Beer, CE-IP Crete 2006 Mean annual GPP of Europe derived from its water balance Christian Beer 1, Markus Reichstein 1, Philippe Ciais 2, Graham Farquhar 3, Dario Papale 4 (1)MDI-BGC, Max Planck Institute for Biogeochemistry, Germany (2)Laboratoire des Sciences du Climat et de L'Environnement, France (3)Research School of Biological Sciences, Australia (4)Forect ecology Lab., University of Tuscia, Italy

Christian Beer, CE-IP Crete 2006 Carbon balance – observations at ecosystem level Eddy Covariance Technique Inventory Carbon fluxes in Zotino, Siberia. Lloyd et al., 2002

Christian Beer, CE-IP Crete 2006 Global Scale: 1)Upscaling Inventory data 2)Models using -Remote Sensing Data (LUE) -Atm. [CO 2 ] (transport inversion) -Climate & Soil data (TEMs) Carbon balance at global scale: observations? GPP TER

Christian Beer, CE-IP Crete 2006 Global Scale: 1)Upscaling Inventory data 2)Models using -Remote Sensing Data (LUE) -Atm. [CO 2 ] (transport inversion) -Climate & Soil data (TEMs) Carbon balance at global scale: observations? GPP TER ?

Christian Beer, CE-IP Crete 2006 Objective Data-driven estimation of European mean GPP. Ball et al., 1987 From Sellers et al., 1997 Making use of linkage between C and H 2 O cycles: -Scaling WUE from stand level to watersheds -Multiplying WUE with water balance of watersheds -Summing up GPP of watersheds

Christian Beer, CE-IP Crete 2006 Outline Generalisation of WUE in forests WUE map of Europe Mean WUE and GPP of watersheds Uncertainties of European GPP number Plausibility

Christian Beer, CE-IP Crete 2006 Ecosystem-level WUE: Definitions GPP & ET: - NEE & LE from CE-IP database (Papale et al., 2006) -GPP derived by NEE partioning (Reichstein et al., 2005) -gap-filling of half-hourly data -aggregation to annual sums WHC at sites: Applying hydraulic parameters to reported soil texture classes (Cosby et al., 1984) FPC: Foliage Projective Cover

Christian Beer, CE-IP Crete 2006 Aim: WUE map

Christian Beer, CE-IP Crete 2006 Large variability of WUE between forest sites StationSpeciesWUE [g/kg] BE-VieFagus4.93 DE-HaiFagus5.15 DE-ThaPicea4.59 DK-SorFagus6.15 FI-HyyPinus3.50 FI-SodPinus2.90 FR-HesFagus4.03 FR-LBrPinus3.08 FR-PueQuercus3.78 IT-Ro1Quercus3.03 NL-LooPinus4.01 Environmental gradients!!

Christian Beer, CE-IP Crete 2006 Generalisation of forest WUE

Christian Beer, CE-IP Crete 2006 Generalisation of forest WUE

Christian Beer, CE-IP Crete 2006 Generalisation of forest WUE

Christian Beer, CE-IP Crete 2006 Generalisation of forest WUE  11 sets of (a 1,a 2,a 3 ) ‚Leave-one-out validation‘

Christian Beer, CE-IP Crete 2006 WUE map of Europe MODIS LAI, 1 km European soil texture map, 1 km WUE VPD, 1 km (33 maps) MODIS Land Cover ForestGrass/Cropland Mean WUE VPD : 18±5g*hPa/kg +

Christian Beer, CE-IP Crete 2006 LAISoil texture WUE VPD WUE map of Europe Mean WUE VPD of crop/grassland

Christian Beer, CE-IP Crete 2006 WUE, 10 kmVPD, 10 km WUE VPD, 10 km WUE VPD, 1 km WUE map of Europe

Christian Beer, CE-IP Crete 2006 Watershed-wide GPP MODIS LAI, 1 km European soil texture map, 1 km WUE VPD, 1 km (33 maps) WUE, 10 kmVPD, 10 km WUE VPD, 10 km (33 maps) WUE, watershed Precip for weighting average GPP, watershed ET=Precip-Runoff MODIS Land Cover ForestGrass/Cropland Mean WUE VPD : 18±5g*hPa/kg +

Christian Beer, CE-IP Crete 2006 Watershed-wide GPP – Basis for European GPP estimate Reichstein et al., 2006 RiverWUE [g/kg] GPP [gC/m²/a] Seine Rhone Tejo Rhine Elbe Danube Gota Iijoki

Christian Beer, CE-IP Crete 2006 GPP result & uncertainties GPP of Europe = 3.21±0.36 PgC/a (11% uncertainty) 6 climate data sets: VPD: -DAO REMO Precipitation: -GPCP CRU REMO maps of WUE VPD + Not taken into account: Uncertainties due to soil texture, LAI, land cover

Christian Beer, CE-IP Crete 2006 Discussion Missing productive land: ~ Six-fold area of Ireland with GPP=1000 gC/m²/a  Underestimation of 0.4PgC/a (13%) Assuming GPP=1000 gC/m2/a for Gota, Iijoki, Oulujoki:  Overestimation of 0.1PgC/a (3%)

Christian Beer, CE-IP Crete 2006 Plausibility – Comparison of NPP assessments GPP = 3.2 PgC/a & NPP/GPP = 0.5  NPP ~ 1.6 PgC/a NPP(forest)~ 0.8 PgC/a (Schulze et al., Nabuurs et al., 2003) NPP(crop)~ 0.5 PgC/a (Imhoff et al., FAOSTAT, 2005) NPP(grass)~ 1 PgC/a (PASIM model, Vuichard, 2007) Total:~ 2.3 PgC/a Lower estimate compared to inventory!? Uncertainty of NPP/GPP ratio?

Christian Beer, CE-IP Crete 2006 Conclusions GPP can be estimated by the water balance on global scale Challenge: Extrapolating WUE in space  WUE VPD = f(WHC,LAI) Uncertainty of mean GPP at least 11%

Christian Beer, CE-IP Crete 2006 Perspectives Relationship WUE VPD =f(WHC,LAI) for grass? Interannual GPP estimates by annual water balance (P-R)  Comparison of GPP anomalies to NEE anomalies by atmospheric CO 2 inversions, or TEMs  Coupling such simple GPP model to inversions of atmospheric transport? (Comment by Christian Rödenbeck)  Parameterisation of large-scale TEMs

Christian Beer, CE-IP Crete 2006 Acknowledgments Spatial Data: Joint Research Center: Soil texture map MODIS Team: Land Cover and LAI Gridded climate data by REMO, CRU, DAO Mean river discharge: The Global Runoff Data Centre, D Koblenz, Germany Eddy Flux Obs., Thank you! M. Aubinet (2x) C. Bernhofer (2x) K. Pilegaard A. Granier S. Rambal R. Valentini D. Lousteau T. Vesala E. Moors T. Laurila D. Schulze N. Buchmann, A. Knohl W. Kutsch G. Kiely H. Soegaard Z. Nagy Z. Barkza Z. Tuba Comments during the ‚database workshop‘ in Amsterdam