Dark Matter G. Chardin CEA/Saclay, DAPNIA. Motivations for non-baryonic Dark Matter Search - 1 Astrophysical measurements –“Dark” matter halo around the.

Slides:



Advertisements
Similar presentations
Status of XMASS experiment Shigetaka Moriyama Institute for Cosmic Ray Research, University of Tokyo For the XMASS collaboration September 10 th, 2013.
Advertisements

EDELWEISS-I last results EDELWEISS-II prospects for dark matter direct detection CEA-Saclay DAPNIA and DRECAM CRTBT Grenoble CSNSM Orsay IAP Paris IPN.
DMSAG 14/8/06 Mark Boulay Towards Dark Matter with DEAP at SNOLAB Mark Boulay Canada Research Chair in Particle Astrophysics Queen’s University DEAP-1:
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Benjamin Schmidt, IEKP, KIT Campus North,
R. Lemrani CEA Saclay Search for Dark Matter with EDELWEISS Status and future NDM ’06 Paris, September 3-9, 2006.
Dark Matter Overview Harry Nelson UCSB INPAC Oct. 4, 2003.
1 Edelweiss-II status Eric Armengaud (CEA), for the Edelweiss Collaboration Axion-WIMPs training workshop, Patras, 22/06/2007.
The XENON Project A 1 tonne Liquid Xenon experiment for a sensitive Dark Matter Search Elena Aprile Columbia University.
Present and Future Cryogenic Dark Matter Search in Europe Wolfgang Rau, Technische Universität München CRESSTCRESST EURECA ryogenic are vent earch with.
30 Ge & Si Crystals Arranged in verticals stacks of 6 called “towers” Shielding composed of lead, poly, and a muon veto not described. 7.6 cm diameter.
What’s the Matter in the Universe? Richard Schnee Syracuse University Quarknet Lecture July 13, 2012 The Search for Dark Matter.
1 Searching For Dark Matter in the Universe: Direct (indirect) methods for the detection of Weakly Interacting Massive Particles (WIMPs) Nader Mirabolfathi.
Dark Matter Facts Baryonic Matter is only 20% of the Universe 80% is Dark Matter Dark Matter doesn’t interact with light or ordinary matter very frequently.
PSD 7, Liverpool, September 2005 Position Sensitive Detectors for Astroparticle Physics Timothy J Sumner Imperial College London.
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
A Direction Sensitive Dark Matter Detector
Dan Bauer Fermilab Users Meeting June 3, 2004 Status of Cold Dark Matter Searches Dan Bauer, Fermilab Introduction Scientific case compelling for cold.
T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini,
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
TAUP2007, Sendai, 12/09/2007 Vitaly Kudryavtsev 1 Limits on WIMP nuclear recoils from ZEPLIN-II data Vitaly A. Kudryavtsev Department of Physics and Astronomy.
Direct Dark Matter Searches
From CDMSII to SuperCDMS Nader Mirabolfathi UC Berkeley INPAC meeting, May 2007, Berkeley (Marina) CDMSII : Current Status CDMSII Perspective Motivation.
Dark Matter Particle Physics View Dmitri Kazakov JINR/ITEP Outline DM candidates Direct DM Search Indirect DM Search Possible Manifestations DM Profile.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
CDMS IIUCSB Direct Dark Matter Detection CDMS, ZEPLIN, DRIFT (Edelweiss) ICHEP 31 Amsterdam July 26, 2002 Harry Nelson Santa Barbara.
Dark Matter Search with SuperCDMS Results, Status and Future Wolfgang Rau Queen’s University.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University.
XMASS experiment Current status 10 th ICEPP Symposium in Hakuba 16 Feb 2004 Yohei Ashie ICRR Univ.of Tokyo.
Summary of indirect detection of neutralino dark matter Joakim Edsjö Stockholm University
Cosmo02, Chicago september 2002 Maryvonne De Jésus 1 DARK-MATTER Direct Detection Maryvonne De Jésus IPN-Lyon/CNRS France
HEP-Aachen/16-24 July 2003 L.Chabert IPNL Latest results ot the EDELWEISS experiment : L.Chabert Institut de Physique Nucléaire de Lyon ● CEA-Saclay DAPNIA/DRECAM.
The European Future of Dark Matter Searches with Cryogenic Detectors H Kraus University of Oxford EURECA.
IceCube Galactic Halo Analysis Carsten Rott Jan-Patrick Huelss CCAPP Mini Workshop Columbus OH August 6, m 2450 m August 6, 20091CCAPP DM Miniworkshop.
The Tokyo Dark Matter Experiment NDM03 13 Jun. 2003, Nara Hiroyuki Sekiya University of Tokyo.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
DARK MATTER & GALACTIC ROTATION 2012 ASTRO SUMMER SCHOOL.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
DARK MATTER IN THE UNIVERSE? PRESENTED BY L. KULL AT THE R.H.FLEET SCIENCE CENTER December 14,2005.
Physics at Extreme Energies, Hanoi, July 2000 Dark Matter Search in the EDELWEISS expt G. Chardin DAPNIA/SPP, CEA-Saclay.
Dark Matter Search with Direction Sensitive Scintillators The10th ICEPP Symposium February 16, 2004, Hakuba H. Sekiya University of Tokyo.
Indirect Detection Of Dark Matter
V. Bertin - CPPM - MANTS Paris - Sept'10 Indirect search of Dark Matter with the ANTARES Neutrino Telescope Vincent Bertin - CPPM-Marseille on behalf.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
? At Yangyang beach, looking for something in the swamp of particles and waves. 1 The recent results from KIMS Seung Cheon Kim (Seoul National University)
ZEPLIN I: First limits on nuclear recoil events Vitaly A. Kudryavtsev Department of Physics and Astronomy University of Sheffield, UK For the UK Dark Matter.
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
Ray Bunker (UCSB) – APS – April 17 th, 2005 CDMS SUF Run 21 Low-Mass WIMP Search Ray Bunker Jan 17 th -DOE UCSB Review.
G. Gerbier Chinese-french workshop CPPM Marseille sept 2005 Dark Matter : overview of direct searches G. Gerbier CEA/Saclay, DAPNIA -Dark Matter WIMP.
Potential for Dark Matter Direct Searches in Australia Professor Elisabetta Barberio The University of Melbourne.
1 CRESST Cryogenic Rare Event Search with Superconducting Thermometers Jens Schmaler for the CRESST group at MPI MPI Project Review December 14, 2009.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
WIMPs Direct Search with Dual Light-emitting Crystals Xilei Sun IHEP International Symposium on Neutrino Physics and Beyond
From Edelweiss I to Edelweiss II
Dark Matter Direct Detection roadmap strategy
The Heidelberg Dark Matter Search Experiment
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
Irina Bavykina, MPI f. Physik
XAX Can DM and DBD detectors combined?
Dark Matter Search with Stilbene Scintillator
LUX: Shedding Light on Dark Matter
LUX: A Large Underground Xenon detector WIMP Search
Detecting WIMPs using Au-DNA Microarrays
Presentation transcript:

Dark Matter G. Chardin CEA/Saclay, DAPNIA

Motivations for non-baryonic Dark Matter Search - 1 Astrophysical measurements –“Dark” matter halo around the galaxies –Local density:  DM ~ GeV/cm3

First, look for baryonic Dark Matter (see P. Tisserant talk) –MACHOs –Cold gas –Black holes Not the solution of the problem…

Motivations for WIMPs Large scale structures CMB precision observations SN1a observations… Rotation curves

“Concordance model” after WMAP (+ HST + SDSS + …) Ω tot = 1.00 ± 0.02 Ω baryon = ± Ω matter ≈ 0.30 Ω  ≈ 0.70 “Concordance model”

Weakly interacting massive particles long lived or stable particles left over from the BB The “WIMP miracle” actual abundance thermoequilibrium abundance

Natural WIMP candidate: SUSY LSP neutralino Direct detection: –WIMP scattering off nuclei Indirect detection: –Detection of WIMP annihilation products –SuperK, ANTARES, AMANDA…  Stable if SUSY exists and R-parity is conserved gaugino fraction:

Possible WIMP Signatures Nuclear vs electronic recoil –(discrimination almost required now) Recoil energy spectrum shape –(exponential, rather similar to background…) Annual flux modulation –(tricky, most events close to threshold, small effect) Diurnal direction modulation –(nice signature, but requires low pressure gaseous target) No multiple interactions –(removes limited fraction of background) Consistency between targets of different nuclei –(essential once first signal is clearly identified)

Direct detection techniques WIMP Heat Ionization Light Ge Liquid Xe NaI, Xe Ge, Si CaWO 4, BGO Al 2 O 3, LiF Elastic nuclear scattering ≈ few % detected energy usually fast no surface effects ? ≈ 20 % energy ≈ 100% detected energy relatively slow requires cryogenic detectors

Experimental challenges Background suppression –Deep underground sites –Radio-purity of components –Active/passive shielding Large target mass required ~ few keV energy threshold Stability and reproducibility Discriminate recoil populations –Photons scatter off electrons –WIMPs/neutrons off nuclei –radon heavy nuclear recoils, alpha tails… Expected Energy Spectra for a 100 GeV WIMP, illustrating the importance of the choice of detector material

Current direct detection experiments CUORICINOGran SassoHeat41 kg TeO2running GENIUS-TFGran SassoIonization42 kg Ge in N2running HDMSGran SassoIonization0.2 kg Ge dioderunning IGEXCanfrancIonization2 kg Ge Diodesstopped DAMAGran SassoLight100 kg NaIstopped LIBRAGran SassoLight250 kg NaIrunning NaIADBoulby mineLight 65 kg NaIrunning ZEPLIN-IBoulby mineLight4 kg Liquid Xerunning CDMS-IStanfordHeat + Ionization 1 kg Ge kg Sistopped CDMS-IISoudan mine Heat + Ionization5 kg Ge + 1 kg Sirunning CRESST-IIGran SassoHeat + Light0.6 to 9.9 kg CaWO4starting EDELWEISS-IModaneHeat + Ionization1 kg Gestopped EDELWEISS-IIModaneHeat + Ionization10-35 kg Gestarting ROSEBUDCanfrancHeat + Light0.2 kg BGOrunning Discrim.NameLocationTechniqueTargetStatus Event-by-event Statistical None

Wimps direct detection experiments CDMS-I (cryo Ge and Stanford), Soudan Mine CDMS-I (cryo Ge and Stanford), Soudan Mine EDELWEISS (cryo Fréjus) EDELWEISS (cryo Fréjus) CRESST (cryo CaWO 4 Gran Sasso CRESST (cryo CaWO 4 Gran Sasso ZEPLIN, DRIFT, Boulby Mine) ZEPLIN, DRIFT, Boulby Mine) DAMA/LIBRA (NaI, Gran Sasso) DAMA/LIBRA (NaI, Gran Sasso) Canfranc, HDMS/GENIUS-TF Gran Sasso Canfranc, HDMS/GENIUS-TF Gran Sasso ROSEBUD (cryo BGO), ANAIS (NaI) ROSEBUD (cryo BGO), ANAIS (NaI) CUORICINO/ CUORE (Te0 2 Gran Sasso CUORICINO/ CUORE (Te0 2 Gran Sasso SIMPLE, MACHe3, ORPHEUS (Bern) SIMPLE, MACHe3, ORPHEUS (Bern) ELEGANT, + Future experiments: CryoArray, EURECA, XENON, XMASS ELEGANT, + Future experiments: CryoArray, EURECA, XENON, XMASS ELEGANT, XMASS CDMS-IIZEPLIN-IIXENONMAJORANACryoArray EDELWEISS CRESST, HDMS/GENIUS DAMA/LIBRACUORICINO/CUORE ZEPLIN, NaIAD, DRIFT IGEXROSEBUDANAIS

Germanium diodes (IGEX, Heidelberg-Moscow) High purity: best intrinsic background level ~ 0.05 evt/kg/keV/day (Heidelberg-Moscow) ~ 0.21 evt/kg/keV/day (IGEX), lower E threshold BUT, no electron recoil background rejection possible Present sensitivity limited to ≈ pb after ≈ 20 years of developments

Running: Genius-TF Based in Gran Sasso 14 x 2.5 kg enriched HPGe crystals in N 2 Extreme radiopurity of all components Expected BG: 0.01 count/kg/keV/d Expected threshold: 12 keV recoil 20 years to see a 4-  modulation compatible with CDMS limit ! Towards data acquisition Liquid N 2 flux system Support structure Detector crystals Zone refined Ge Liquid N 2 Polystyrene Low level Pb or Cu Standard Boliden Pb Boron-Polyethylene 90 cm Tritium Cosmogenesis ( 68 Ge) Radon decay products Inner 133 Ba source Outer 60 Co source

First WIMP candidate: DAMA NaI PMT Gran Sasso Lab, 3500 mwe 9 crystals for ≈ 100kg NaI(Tl) Scintillation detectors with N 2 flow Limited discrimination (not used after 1996 exclusion analysis) Looking for annual modulation

A first WIMP candidate: DAMA Data taking completed in July 2002 Total exposure of 107,731 kg.d See annual modulation at 6.3  Claim model-independent evidence for WIMPs in the galactic halo WIMP candidate under standard halo parameters: M  = ( ) GeV and   = ( ) pb Rather opaque analysis (raw spectrum, cuts, calibration) Nevertheless, checking this result remains important 2nd phase 250 kg LIBRA running

DAMA Energy Resolution “DAMA energy resolution at low energies is better than the resolution measured for much smaller crystals and better than poissonian limit with a light yield of 10 photoelectrons per keV” (UKDMC, Robinson et al. 2002) Note: DAMA measures ≤ 6 photoelectrons/keV (visible energy) UKDMC, measured for DM77 DAMA, preprint INFN/AE-00/10, 2000 Sakai, IEEE Transactions on Nuclear Science, vol. NS-34, cm crystal

CDMS-II detectors: ZIPs 250 g Ge or 100 g Si crystal 1 cm thick x 7.5 cm diameter Collect athermal phonons: XY position imaging Surface (Z) event veto based on pulse shape risetime Measure ionization in low-field (~volts/cm) with segmented contacts to allow rejection of events near outer edge Q outer Q inner z y x X Y Z-sensitive Ionization and Phonon-mediated© (see Long Duong talk)

CDMS II Background Discrimination Ionization Yield (ionization energy per unit recoil energy) depends strongly on type of recoil Most background sources (photons, electrons, alphas) produce electron recoils 47k Photons (external source)

CDMS II Background Discrimination Ionization Yield (ionization energy per unit recoil energy) depends strongly on type of recoil Most background sources (photons, electrons, alphas) produce electron recoils Neutrons from external source Photons from external source

First CDMS-II Soudan astro-ph/ , submitted to PRL no event after cuts and blind analysis new benchmark ≈ factor 10 increase in sensitivity expected in near future powerful rejection of surface events using charge/phonon risetime (see Long Duong talk)

EDELWEISS-I Modane Lab: 4800 mwe  muons / Low radioactivity dilution cryostat 17 mK Shielding: 30cm paraffin, 20cm Pb, 10cm Cu 3 x (Heat + Ionization) 320 g Ge detectors –Charge collection 4V polarisation –Guard ring electrode –Amorphous Ge or Si sub-layer (surface events) –NTD-Ge thermal sensors Center Q Guard Q Heat Ge Al Amorphous Ge or Si

Nuclear recoil discrimination down to 20 keV threshold :  -ray rejection > % Neutron + gamma calibration Edelweiss: event-by-event discrimination O. Martineau et al., astro-ph/ /

EDELWEISS thermal detectors: excellent energy resolution Sub-keV energy resolution on phonon channels (down to 250 eV baseline, 350 eV FWHM at 10 keV) ≈1 keV FWHM on charge channels Background comprehension down to a few keV e.e. O. Martineau et al., astro-ph/ / 71 Ge EC + 68 Ge EC 65 Zn EC Phonon energy (keV) Nb of events

EDELWEISS-I : 2002 data from GGA1 detector 3 months data acq: 0 event (1?) Sensitivity: ≈ 1.4  picobarn Nuclear recoil calibrations at start and end of data taking (G. Chardin talk in parallel session) Q= A. Benoit et al., astro-ph/ /, Phys. Lett. B 545 (2002) 43

Edelweiss-I 2004 preliminary ≈ 62 kg x day total data sample lower energy threshold (≈ 15 keV) 6 events above 30 keV (≈ 9 keV e.e.) incompatible with DAMA without assuming unconventional interactions 1 double interaction (10% proba.): neutron background ? Energy spectrum Recoil energy (keV)

Dilution : 8-10 mK obtained on several runs Wiring and cold electronic test : mid 2004 March 2004: EDELWEISS-I ended Install EDELWEISS-II with 21 x 320-g + 7 x 400-g Ge detectors (≈ 10 kg germanium) 120 detector capacity (35 kg Ge) Edelweiss-II

Works with many absorber materials CaWO 4, PbWO 4, BaF, BGO (other tungstates and molybdates) Appl. Phys.Lett. 75(9),1335(1999) High rejection: 99.7% E > 15 keV 99.9% E > 20 keV CRESST-II experiment (Gran Sasso) Background discrimination by simultaneous detection of phonons and light separate calorimeter as light detector light reflector W-SPT scintillator W-SPT

phonon channel 300g CaWO 4 Ø = 40mm, h = 40mm W-SPT 4 x 6 mm 2 light channel Si 30 x 30 x 0.4 mm 3 W-SPT reflector polymeric foil, teflon CRESST II –Detector Module 33 modules (≈ 10 kg) for CRESST II

 -ray background neutron background (oxygen recoil band) No tungsten recoil in Daisy data (12-40 keV) New CRESST result astro-ph/

Direct detection summary Background discrimination is now essential Sensitivity of CDMS, EDELWEISS and CRESST one order of magnitude better than present competitors Optimistic SUSY models are now tested

Experimental status and theoretical predictions L. Rozkowski et al., hep-ph/ CDMS-II, CRESST-II, EDELWEISS-II, XENON, XMASS … sensitivity goals 1 Ton sensitivity goal (optimistic) CDMS, CRESST EDELWEISS-I present

ZEPLIN-I: light time constants Xe * +Xe Xe 2 * Triplet 27ns Singlet 3ns 2Xe 175nm Xe ** + Xe Xe 2 + +e - (recomb- ination) Xe + +Xe Ionisation Excitation Electron/nuclear recoil

ZEPLIN-I: some caveats Sensitivity claimed by ZEPLIN: picobarn at M W = 60 GeV requires very large background subtraction: > 99.9 % No calibration in range of interest for WIMP recoils (< 40 keV) In presence of a neutron source, no low-energy nuclear recoils are observed ! Instead “ambient neutrons” (when neutron source is removed !) are used as calibration No demonstration that “ambient neutrons” are indeed neutrons Conservative ZEPLIN-I sensitivity: picobarn, not picobarn Gamma source Neutron source keV recoil energy

122 keV peak 136 keV peak (10%) 30 keV X-ray 90 keV recoil e- Linear response 1.5 p.e./keV ( 57 Co calibration is effective point source) Resolution Resolution > 100% at 10 keV visible energy Nearly all WIMP interactions below this energy ZEPLIN I Energy Resolution WIMP interactions

Perspective: XENON Dual phase Xe experiment using TPC Light/Ionization detector Very-low BG photomultipliers 10 kg prototype underway 100kg phase : 1 TPC Real 3-D measurement if CsI photocathode is efficient enough Goals: –1 ton scale (10 LXeTPC) –16 keV recoil threshold –> 99.5% BG discrimination –Reach pb within 3 years (See E. Aprile’s talk) 100kg LXeTPC

XMASS: 100kg test detector MgF 2 window 54 2-inch low BG PMTs Liq. Xe (30 cm) 3 ≈ 30 l ≈ 100 kg Vertex/energy: based on scintillation light pattern. Low background setup Vertex, energy reconstruction self-shielding purification system Demonstration of self- shielding at high energies (> 150 keV) High energy threshold No DM limits derived

Next 800kg detector for DM search DM search 642-2” PMTs ≈ 80% photo-coverage ~7 p.e./keV “Full” photo-sensitive “Spherical” geometry 80cm center 5keV 10keV Low energy threshold (100 kg)

Wimps indirect detection experiments AMANDA, ICECUBE (South Pole) AMANDA, ICECUBE (South Pole) ANTARES (Mediterranean), ANTARES-1km2 ANTARES (Mediterranean), ANTARES-1km2 NESTOR NESTOR Superkamiokande, Hyperkamiokande Superkamiokande, Hyperkamiokande Gamma-ray telescopes: CANGAROO, MAGIC, HESS, … Gamma-ray telescopes: CANGAROO, MAGIC, HESS, … Satellite experiments: AMS-02, GLAST, … Satellite experiments: AMS-02, GLAST, … AMANDA, ICECUBE ANTARES CANGAROO HESS SuperK Satellites: GLAST, AMS-02, PAMELA … VERITAS MAGIC

WIMP indirect detection WIMP elastic scattering: in average, loss of energy ; v < v escape capture  WIMPs will gather at center of Sun, galaxy, Earth Neutralino: Majorana particle  its own antiparticle if massive  must annihilate Annihilation  ; b, c, t quarks; gauge bosons; Higgs bosons ;  ; e + ; antiprotons Main signatures: Search for excess of up-going muons from direction from center of Sun, galaxy, Earth Search for annihilation lines (galactic center, cosmological, …)

 - Dark matter in Galaxy due to neutralinos (self annihilate) - Density  0.3 GeV/cm 3  +   b + b C +  +  Mostly neutrinos from the Center of the Sun and the Earth

AMANDA-II AMANDA Amanda-II: 677 PMTs at 19 strings ( ) depth

~ km 2 detectors ICECUBE, ANTARES, NESTOR… (see review talk by A. Kouchner)

Neutrino skyplot Amanda-II 679 events below horizon above horizon: mostly fake events

WIMP indirect searches : best present limit from Super-K Super-Kamiokande: 50 kT water Cherenkov detector (22.5 kT fiducial) inward-facing 20 in. PMTs 1885 outward-facing veto PMTs Combined analysis for sun, earth and galactic center: no excess over atmospheric neutrino expectation in any cone angle. Conservative limit within a factor ≈ 5-10 of CDMS Super-K DAMA 3s allowed region CDMS 2004

HEAT, PAMELA, AMS-02… Charged antiparticles : antiproton; e+ (detection requires large enhancement factors) Charged  no directionality S/B discrimination difficult, spectral shape prediction (over background E –  ) Directionality on gamma-ray flux S/B discrimination via on/off sources of high density : galactic centre, but signature ? Energy up to m c, resonance at E = m c

(see talks by S. Gentile and T. Siedenburg)

Positron DM signal: HEAT vs. AMS-02

CANGAROO experiment (Australia): ≈ TeV gamma-rays from the Galactic Center (see talk by Pascal Vincent) Significant excess observed (10  ) Galactic Center: complex region Signature of WIMP annihilation ? Spectrum not confirmed by HESS (in print) astro-ph/

Direct/indirect:  flux from the Earth (See also talk by P. Ullio) strictly after J. Edsjö, review paper at Neutrino’2004 Direct detection definitely more sensitive Future direct detection experiments (10 -9 pb at best mass). CDMS excluded

Direct/indirect:  flux from the Sun (See also talk by P. Ullio) strictly after J. Edsjö, review paper at Neutrino’2004 Complementarity between direct and indirect detection Future direct detection experiments (10 -9 pb at best mass). CDMS excluded

Conclusions Direct detection WIMP experiments (CDMS, EDELWEISS and CRESST) are at last sensitive to (optimistic) SUSY models (≈ pbarn) Next generation experiments (CDMS-II, CRESST-II, EDELWEISS-II, XENON, …) should bring factor ≈ x improvement in sensitivity (≈ few pbarn) and begin to test more realistic models Testing the bulk of SUSY parameter space (down to pbarn) will require experiments in the one-ton range and extreme background rejection Indirect detection is complementary (spin-dependent couplings), but hardly competitive for detection of low  scalar interaction models LHC (see talk by E. Perez) together with direct/indirect detection experiments will hopefully allow to pinpoint WIMP DM within the next ≈ 10 years