ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.

Slides:



Advertisements
Similar presentations
Measurement of the  n(p)  K +   (p) at Jefferson Lab Sergio Anefalos Pereira Laboratori Nazionali di Frascati.
Advertisements

SKS Minus Detectors in detail Tohoku Univ. K.Shirotori.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
TJR Feb 10, 2005MICE Beamline Analysis -- TRD SEPT041 MICE Beamline Analysis – TRD SEPT04 Tom Roberts Muons, Inc. February 10, 2005.
1 EMCal & PID Rikard Sandström Universite de Geneve MICE collaboration meeting 26/6-05.
HYP06 Next generation hypernuclear gamma-ray spectrometer: Hyperball-J Koike, Takeshi Tohoku University Introduction Hyperball-J requirements Array geometry.
Dec 2005Jean-Sébastien GraulichSlide 1 Improving MuCal Design o Why we need an improved design o Improvement Principle o Quick Simulation, Analysis & Results.
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
1 EMCal design MICE collaboration meeting Fermilab Rikard Sandström.
Update on the Gas Ring Imaging Cherenkov (GRINCH) Detector for A 1 n using BigBite Todd Averett Department of Physics The College of William and Mary Williamsburg,
Spectroscopic Investigation of P-shell Λ hypernuclei by the (e,e'K + ) Reaction - Analysis Update of the Jlab Experiment E Chunhua Chen Hampton.
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP.
HLab meeting 10/14/08 K. Shirotori. Contents SksMinus status –SKS magnet trouble –Magnetic field study.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
J-PARC での YN 相互作用の研究 東北大学理学研究科 三輪浩司. Contents Physics background YN interaction Scattering experiment, spectroscopy Past experiments of YN scattering.
A Reconstruction Algorithm for a RICH detector for CLAS12 Ahmed El Alaoui RICH Workchop, Jefferson Lab, newport News, VA November th 2011.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
HARP for MiniBooNE Linda R. Coney Columbia University DPF 2004.
S-2S meeting Toshiyuki Gogami 27Aug2014. Contents About correction using “Energy loss vs. missing mass”
K 中間子原子核探索実験 ( J-PARC E15 実験) の解析状況 佐田優太 ( 京都大学、理研 ) Y.SADA for the E15 collaboration RCNP 研究会「核子・ハイペロン多体系における クラスター現象」 1.
GlueX Particle Identification Ryan Mitchell Indiana University Detector Review, October 2004.
SHMS Optics and Background Studies Tanja Horn Hall C Summer Meeting 5 August 2008.
Possibility for hypernuclei including pentaquark,   Kiyoshi Tanida (Seoul National Univ.) 19 Sep 2009 High resolution search for   &
The search for deeply bound kaonic nuclear states at J-PARC Toshihiko Hiraiwa Kyoto University On behalf of the J-PARC E15 collaboration.
SksMinus status SKS meeting 2008/1/18 白鳥昂太郎. SksMinus setup SksMinus  STOF : Time-of-flight  SAC & BAC: K - beam veto and  - ID (n=1.03)  SDC1~4 :
Analysis strategy of high multiplicity data Toshiyuki Gogami 24/Feb/2011.
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
BNL/ Tatsuya CHUJO CNS workshop, Tokyo Univ. Identified Charged Single Particle Spectra at RHIC-PHENIX Tatsuya Chujo (BNL) for the PHENIX.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
Hypernuclear spectroscopy using (K - stop,  0 ) and (e,e’K + ) reactions Doc. dr. sc. Darko Androić University of Zagreb Physics Department.
Kinematics of  + n   p   0  p reaction Susumu Oda 2007/04/10-19.
NanoPHYS’12 – December 17-19, 2012 K. Nakano, S. Miyasaka, K. Nagai and S. Obata (Department of Physics, Tokyo Institute of Technology) Drift Chambers.
SksMinus status SKS meeting 2007/5/10 白鳥昂太郎. SksMinus setup SksMinus  STOF : Time-of-flight  SAC & BAC: K - beam veto and  - ID (n=1.03)  (SFV : K.
Yosuke Watanabe….. University of Tokyo, RIKEN A, KEK C, Development of a GEM tracker for E16 J-PARC 1 Thanks to ???????????
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
A search for deeply-bound kaonic nuclear states in (in-flight K -, N) reaction Hiroaki Ohnishi RIKEN.
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
KEK beam test in May 2005 Makoto Yoshida Osaka Univ. MICE Frascati June 27 th, 2005.
SksMinus status Hyperball collaboration meeting 2009/3/11 K. Shirotori.
ECAL PID1 Particle identification in ECAL Yuri Kharlov, Alexander Artamonov IHEP, Protvino CBM collaboration meeting
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
A search for strange tribaryonic states in the reaction Heejoong Yim Seoul National University For KEK-PS E549 collaboration.
JLab における (e,e'K + ) 反応を用い た 精密ラムダハイパー核分光実験 東北大学理学研究科 後神 利志 Toshiyuki Gogami Strangeness 2010 at KEK JLab Hall-C.
KEK Test Beam Phase I (May 2005) Makoto Yoshida Osaka Univ. MICE-FT Daresbury Aug 30th, 2005.
Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, May 25, 2004 Purpose:  Provide pion – muon separation (muon veto)
Muon detection in NA60  Experiment setup and operation principle  Coping with background R.Shahoyan, IST (Lisbon)
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート.
Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 Beam line Tohoku Univ. K.Shirotori 東北大学 大学院理学研究科 白鳥昂太郎.
SksMinus simulation program. Program reconstruction Modification of SksMinus Geant4 program  Included configuration file Reaction selection Simulated.
The Status of Hyperball-J Akio Sasaki Dept. of Phys. Tohoku Univ. 23/9/2011.
Seoul National University On behalf of J-PARC E18 Collaboration
Florida International University, Miami, FL
of secondary light ion beams
The First
Progress on J-PARC hadron physics in 2016
LHCb Particle Identification and Performance
高強度高分解能2次ビームラインを用いたハイパー核研究
SksMinus simulation program
E19 result Ryuta Kiuchi (SNU)
SksMinus status 03 HB meeting 2008/5/02 白鳥昂太郎.
Presentation transcript:

ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI

2006 Strangeness ATAMI2 Outline  Background of experiments  Requirement on setup  Modification of SKS  Setup : SksMinus  Detectors in detail, DC, Veto counters  Summary  Future plan

2006 Strangeness ATAMI3 “DAY-1” experiment E13  Several light hypernuclear gamma-ray spectroscopy experiments are planned. ( 4  He, 7  Li, 10  B, 11  B, 19  F) Beam momentum  (K -,  -  1.5 GeV/c (500 k/spill, full intensity)  The best sensitivity for selecting spin-flip state  1.1~1.8 GeV/c beam for 4  He    n  

2006 Strangeness ATAMI4 Requirement on spectrometer for hypernuclear gamma-ray spectroscopy  To analyze 1.4 GeV/c (1.1~1.8 GeV/c) scattered  - by existing spectrometer system  Large acceptance ~100 msr,  ~20 degree → Enough hypernuclear production yield.  Good momentum resolution 2~4 MeV/c → To distinguish excited states of hypernuclei SksMinus (Superconducting Kaon Spectrometer Modified for Hypernuclear Gamma ray Spectroscopy)

SKS to SksMinus

2006 Strangeness ATAMI6 The modification of SKS Momentum resolution 0.1%FWHM ( MeV/c, 2.2T Maximum central momentum T Acceptance GeV/c 2.2T2.7T  ~20°  Scattered particles are not focused and present drift chambers (SDC3,4) are small for large reaction angle (half acceptance) GeV/c (  +, K + ) reaction (K GeV/c) Present SKS

2006 Strangeness ATAMI7 The modification of SKS  Keeping large acceptance and wide angular coverage by large drift chambers (2m×1m) (from BNL and Freiburg)  Incident beam angle and position of drift chambers are optimized by keeping acceptance for the 1.5 GeV/c beam condition.  Setup can be used for 1.1~1.8 GeV/c beam hypernuclear gamma ray spectroscopy experiment without modification.  ~20°

2006 Strangeness ATAMI8 The modification of SKS  Keeping large acceptance and wide angular coverage by large drift chambers (2m×1m) (from BNL and Freiburg)  Incident beam angle and position of drift chambers are optimized by keeping acceptance for the 1.5 GeV/c beam condition.  Setup can be used for 1.1~1.8 GeV/c beam hypernuclear gamma ray spectroscopy experiment without modification. 170cm 270cm On the step, not a giant

2006 Strangeness ATAMI9 The K1.8 Beam line and SksMinus Beam spectrometer ・ BH1,2 : Time-of -flight ・ BAC :  - veto (n=1.03) SksMinus ・ STOF : Time-of-flight ・ SAC : K - beam veto (n=1.03) ・ SFV : K - beam veto Target : ~ 20 g/cm 2 Length : 20 cm MWPC & DC : Beam position measurement Background Veto ・ SMF :  - from K - →  - + ・ SP0 :  - from K - →  - +  0 Hyperball-J :  ray T.Koike 12/15

2006 Strangeness ATAMI10 SksMinus ・ SAC : K - beam veto (n=1.03) ・ SFV : K - beam veto ・ STOF : Time-of-flight SDC1~4 : Beam position measurement Background Veto ・ SMF :  - from K - →  - + ・ SP0 :  - from K - →  - +  0 Target : ~20 g/cm 2 Length : 20 cm

SksMinus performance Basic performance  Acceptance  Momentum resolution

2006 Strangeness ATAMI12 Acceptance  Acceptance at 1.4 GeV/c ~ 130 msr by large drift chambers (2m×1m)  Angular acceptance is enough, ~ 20 degree Acceptance is determined by SKS magnet gap and distance from SKS entrance. Higher momentum → Cut off by SKS magnet Lower momentum → Out of range SDC3,4

2006 Strangeness ATAMI13 Momentum resolution  Momentum resolution at 1.4 GeV/c ~2.1 MeV/c (FWHM), intrinsic ~1.6, MSC ~1.3  400  m DC resolution and multiple scattering (DC : Ar gas, He bag : He gas, Air) Higher momentum → Intrinsic resolution (bending angle) Lowe momentum → Similar to present SKS, ~0.9 MeV/c 1.0 GeV/c

SksMinus performance Beam decay suppression  Muon Filter  PiZero Veto

2006 Strangeness ATAMI15 Background rejection Beam K - decay products make serious background (Trigger rate, Missing mass spectrum) Fake trigger ~1740/spill True event trigger ~1000/spill (Contribution of three-body decay ~200 /spill) Beam K BACSAC Target 20cm  Reaction  K - →  - (63.4%) ⇒ Muon Filter (1390 /spill)  K - →  -  0 (21.1%) ⇒ PiZero Veto (350 /spill)

2006 Strangeness ATAMI16 Background rejection  K - →  - (63.4%) ⇒ Muon Filter (1390 /spill)  K - →  -  0 (21.1%) ⇒ PiZero Veto (350 /spill) Beam K - decay products make serious background (Trigger rate, Missing mass spectrum) Fake trigger ~1740/spill True event trigger ~1000/spill (Contribution of three-body decay ~200 /spill) Beam K BACSAC Target 20cm  Decay

2006 Strangeness ATAMI17 Muon Filter -SMF-  86% of  can be rejected in the 1.5 GeV/c beam  Stopped  cannot be rejected. (In the offline analysis >99%)  Over kill for true π ~2.5%  - (passing through)  - (stopped in the iron) Not need to change iron thickness, 1.1~1.8 GeV/c beam  momentum Stopping points

2006 Strangeness ATAMI18 Muon Filter -SMF-  86% of  can be rejected in the 1.5 GeV/c beam  Stopped  cannot be rejected. (In the offline analysis >99%)  Over kill for true π ~2.5% Not need to change iron thickness, 1.1~1.8 GeV/c beam  momentum Stopping points -- -- X Z

2006 Strangeness ATAMI19 PiZero veto -SP0-  78% of  0 can be detected by 6 sets of 5 mm lead plate and scintillation counter layer at 1.5 GeV/c beam. (85% of  from  0 hit the SP0) Reaction  - pass through the window. Acceptance 85%

2006 Strangeness ATAMI20 PiZero veto -SP0-  78% of  0 can be detected by 6 sets of 5 mm lead plate and scintillation counter layer at 1.5 GeV/c beam. (85% of  from  0 hit the SP0) Reaction  - pass through the window. Acceptance 85%

2006 Strangeness ATAMI21 Trigger 1.5 GeV/c beam  (K -,π - ) Reaction rate ~1000 /spill  K - →  - ~1390 /spill  K - →  -  0 ~350 /spill  K - Beam ~30 /spill  3-body decay ~200 /spill ~2970 /spill w/o Veto counters True trigger ~500 /spill w/ Ge trigger and fake trigger greatly decreased (1/4). ~1320/spill w/ Veto counters ~570/spill w/ Ge trigger (K -,  -  ) at p K = 1.5 GeV/c (500 k/spill) Comparable to the present trigger rate  (K -,π - ) Reaction rate ~950 /spill  K - →  - ~190 /spill  K - →  -  0 ~80 /spill  K - Beam ~30 /spill  3-body decay ~70 /spill

2006 Strangeness ATAMI22 4  He experiment  Energy spacing of 4  He(1 + ) → 4  He(0 + ), ( 4  H(1 + ) → 4  H(0 + ) : (K -,  0 ), no charge and SP0 1.5 GeV/c beam M.Ukai 12/15  Spin-flip measurement Momentum (1.1), 1.3, 1.5, 1.8 GeV/c →Acceptance and momentum resolution are enough. PID counters →STOF, SAC and SFV are enough. Veto counters →More study is needed : Trigger 1.8 GeV/c.    n  

2006 Strangeness ATAMI23 Summary  Several hypernulcear gamma-ray experiments are planned at the J-PARC K1.8 beam line ( 4  He, 7  Li, 10  B, 11  B, 19  F).  SksMinus is sufficient for hypernuclear gamma-ray spectroscopy at 1.5 GeV/c beam. Acceptance 130 msr, 20 degree. Momentum resolution 2.1 MeV/c.  Simulations in progress show a good veto counter efficiency at 1.5 GeV/c beam, SMF ~86%, SP0 ~78%.  SksMinus can be used for 1.1~1.8 GeV/c beam.

2006 Strangeness ATAMI24 Future Plan  Determination of the final SksMinus design  SDC3&4 shipped from BNL and Freiburg and repaired in 2007  PMT for TOF and Cherenkov from BNL D6 beam line and Range counter (E559) in 2007  Design and construction of SMF, SP0 and other counters in 2007~2008

Backup

2006 Strangeness ATAMI26 Particle identification  (K -,  - ) →  - or K - Beam K- can greatly be decreased by SAC (n=1.03) and SFV → less than 30 trigger /spill (500 k/spill beam)  Time resolution of STOF ~150 ps (rms)  For B(M1) measurement, dual SAC is planned because of saving forward events.

2006 Strangeness ATAMI27 Magnetic field Calculated magnetic filed map is used in simulations.

2006 Strangeness ATAMI28 The modification of SKS  Large acceptance and wide angular coverage by large drift chambers (2m×1m)  Incident beam angle and position of drift chambers are optimized by keeping acceptance for the 1.5 GeV/c beam condition.  Setup can be used for 1.1~1.8 GeV/c beam hypernuclear gamma ray spectroscopy experiment without modification.

2006 Strangeness ATAMI29 Beam Veto  SAC efficiency ~ 99% →5k trigger 500k/spill SFV → ~ 10 trigger Reduction of acceptance 7.5%  Beam size σ x =19.8 mm σ y =3.2 mm (u=0.02, v=0.002) SBS  SBS K - beam directly hit SDC3,4. ↓ Scattering beam particles by some material (Pb, W) 300kHz → 20mm cell

2006 Strangeness ATAMI30 SMF & SP0 1.1~1.8 GeV/c beam It is difficult to suppress trigger rate at higher beam intensity…  - ~ GeV/c beam (~4300 trigger)  - ~ GeV/c beam (~1200 trigger) SMFSP0

2006 Strangeness ATAMI31 3-body Decay K - →π - π - π + (5.58%) K - →e - π 0 ν (4.87%) K - →μ - π 0 ν (3.27%) K - →π - π 0 π 0 (1.73%)