Front-End ASICs for CZT and Si Multi-Element Detectors Gianluigi De Geronimo Microelectronics Group, Instrumentation Division, Brookhaven National Laboratory,

Slides:



Advertisements
Similar presentations
Analog Peak Detector and Derandomizer G. De Geronimo, A. Kandasamy, P. O’Connor Brookhaven National Laboratory IEEE Nuclear Sciences Symposium, San Diego.
Advertisements

Specific requirements for analog electronics of a high counting rate TRD Vasile Catanescu NIHAM - Bucharest CBM 10th Collaboration Meeting Sept 25 – 28,
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
The NO A APD Readout Chip Tom Zimmerman Fermilab May 19, 2006.
Design and Implementation a 8 bits Pipeline Analog to Digital Converter in The Technology 0.6 μm CMOS Process Eri Prasetyo.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
CADMIUM ZINC TELLURIDE (CZT) IMAGER INTRODUCTION : 1.SCIENTIFIC REQUIRMENT 2. DETECTORS USED IN IMAGER 3. ELECTRICAL CIRCUITS (FRONT END ELECTRONICSUSED)
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
A CMOS circuit for Silicon Drift Detectors readout
14-5 January 2006 Luciano Musa / CERN – PH / ED General Purpose Charge Readout Chip Nikhef, 4-5 January 2006 Outline  Motivations and specifications 
L. Gallin-Martel, D. Dzahini, F. Rarbi, O. Rossetto
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
Performance test of STS demonstrators Anton Lymanets 15 th CBM collaboration meeting, April 12 th, 2010.
Brookhaven Science Associates U.S. Department of Energy Multi-element Silicon Detectors for X-ray Spectroscopy and Diffraction D. P. Siddons, A. Kuczewski.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
Silicon Sensor with Readout ASICs for EXAFS Spectroscopy Gianluigi De Geronimo, Paul O’Connor Microelectronics Group, Instrumentation Division, Brookhaven.
Managed by Brookhaven Science Associates for the U.S. Department of Energy Gianluigi De Geronimo Instrumentation Division, BNL April 2012 VMM1 Front-end.
Readout ASIC for SiPM detector of the CTA new generation camera (ALPS) N.Fouque, R. Hermel, F. Mehrez, Sylvie Rosier-Lees LAPP (Laboratoire d’Annecy le.
Detectors for Light Sources Contribution to the eXtreme Data Workshop of Nicola Tartoni Diamond Light Source.
Front End Circuit.. CZT FRONT END ELECTRONICS INTERFACE CZTASIC FRONT END ELECTRONICS TO PROCESSING ELECTRONICS -500 V BIAS+/-2V +/-15V I/O signal.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Progress on STS CSA chip development E. Atkin Department of Electronics, MEPhI A.Voronin SINP, MSU.
Performance of a 128 Channel counting mode ASIC for direct X-ray imaging A 128 channel counting ASIC has been developed for direct X-ray imaging purposes.
Design & Development of an Integrated Readout System for Triple-GEM Detectors Alessandro PEZZOTTA III Year PhD Seminar, Cycle XXVIII 22 September 2015.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
P. Baron CEA IRFU/SEDI/LDEFACTAR Meeting Santiago de Compostela March 11, A review of AFTER+ chip Its expected requirements At this time, AFTER+
HINP32C Southern Illinois University Edwardsville VLSI Design Research Laboratory Washington University in Saint Louis Nuclear Reactions Group.
A 128-channel event-driven readout ASIC for the R 3 B Tracker TWEPP 2015, Lisbon Lawrence Jones ASIC Design Group Science and Technology Facilities Council.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
1 Luciano Musa, Gerd Trampitsch A General Purpose Charge Readout Chip for TPC Applications Munich, 19 October 2006 Luciano Musa Gerd Trampitsch.
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
JRA-1 ISRSI Consortium Meeting Perugia, INAF/IASF (BO,PA)
VMM ASIC ― Status Report - April 2013 Gianluigi De Geronimo
HEXITEC ASIC – A Pixellated Readout Chip for CZT Detectors Lawrence Jones ASIC Design Group Science and Technology Facilities Council Rutherford Appleton.
LHCb Vertex Detector and Beetle Chip
LC Power Distribution & Pulsing Workshop, May 2011 Super-ALTRO Demonstrator Test Results LC Power Distribution & Pulsing Workshop, May nd November.
Fermilab Silicon Strip Readout Chip for BTEV
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
VMM Update Front End ASIC for the ATLAS Muon Upgrade V. Polychronakos BNL RD51 - V. Polychronakos, BNL10/15/131.
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
CBM 12 th Meeting, October 14-18, 2008, Dubna Present status of the first version of NIHAM TRD-FEE analogic CHIP Vasile Catanescu and Mihai Petrovici NIHAM.
Update on works with SiPMs at Pisa Matteo Morrocchi.
Technical status of the Gossipo-3 : starting point for the design of the Timepix-2 March 10, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
NEWS FROM MEDIPIX3 MEASUREMENTS AND IMPACT ON TIMEPIX2 X. Llopart CERN.
Analog Circuits Hiroyuki Murakami. CONTENTS Structure of analog circuits Development of wide linear range CSA system Problem of analog circuits How to.
CEA DSM Irfu IDeF-X HD Imaging Detector Front-end for X-ray with High Dynamic range Alicja Michalowska, CEA-IRFU 1 Journées VLSI June 2010.
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
Valerio Re Università di Bergamo and INFN, Pavia, Italy
KLOE II Inner Tracker FEE
A General Purpose Charge Readout Chip for TPC Applications
LHC1 & COOP September 1995 Report
VMM ASIC ― Status Report - April 2013 Gianluigi De Geronimo
CTA-LST meeting February 2015
Jan Soldat, Heidelberg University for the DSSC ASIC design groups
DCH FEE 28 chs DCH prototype FEE &
A Readout Electronics System for GEM Detectors
VMM1 An ASIC for Micropattern Detectors
A Low Power Readout ASIC for Time Projection Chambers in 65nm CMOS
Status of n-XYTER read-out chain at GSI
STATUS OF SKIROC and ECAL FE PCB
BESIII EMC electronics
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
Readout Electronics for Pixel Sensors
Phase Frequency Detector &
Presentation transcript:

Front-End ASICs for CZT and Si Multi-Element Detectors Gianluigi De Geronimo Microelectronics Group, Instrumentation Division, Brookhaven National Laboratory, Upton, NY

Outline I.Circuit Solutions II.ASICs for CdZnTe Sensors III.ASICs for Si Sensors

Typical front-end channel pixel reset high-order filter baseline stabilizer to external ADC amplitude and timing extractor charge preamplifier shaper back-end processing & data concentration  high reliability  ease of use  spectroscopic quality  data concentration optimization

Input MOSFET optimization A3PA3P A 2 A f C g A1PA1P CgCg gmgm I p I rst CpCp CiCi IpIp Q gm,Cg,Afgm,Cg,Af P,A1,A2,A3P,A1,A2,A3 reset g m,C g,A f, are functions of input MOSFET width W and power P output IM

Input MOSFET optimization C g  ( C ox L+C ov )·W A f  K f / ( C ox L·W ) g m vs Pg m vs W

Input MOSFET optimization

Vdd Vgc Vgl in out current source load cascode Vgs input MOSFET g m and r o are functions of Vds Vds

Continuous reset of the preamplifier charge preamplifier Vgr L/W>>1, strong inversion, saturation pixel Mf Cf IpQIpQ  current gain equal to N  fully linear  self-adapts to leakage current  minimum noise contribution 1 st stage of shaper NIpNQNIpNQ N  Mf N  Cf Rs Cs CR

Continuous reset of the preamplifier

linearityoutput vs pixel leakage current

High order shaping A1/PA1/P 5 th cpx1 5 th nd 2.64 CgCg gmgm A1PA1P

Output baseline stabilizer high-order shaper - + low-freq. low-pass filter x diff. Vref BS

Output baseline stabilizer transfer functionperformance at high rate

First generation of front-end ASICs other features plug & play per-channel test capacitor programmable gain programmable peaking time high output drive capability high stability vs temperature OF

Generation of front-end ASICs for CZT Technology : 0.5µm CMOS SP3M CZT

CZT – ASIC spectra measurements 241 Am spectrum 57 Co spectrum

CZT – ASIC spectra measurements 241 Am spectrum 57 Co spectrum detector thickness 3mm detector bias -600V resolution 4.3% at 59keV gain 200mV/fC peaking time 1.2µs detector thickness 3mm detector bias -600V resolution 3.5% at 122keV, 21.8% at 14keV gain 200mV/fC peaking time 1.2µs

CZT – ASIC applications Solstice Gamma cameraeZ-SCOPE hand held Gamma camera 96 CZT crystals 3072 pixels 192 front-end ASICs 1.3M events/second average FWHM 3.8% at 122keV 1 CZT crystal 256 pixels 16 front-end ASICs 4.8M events/second average FWHM 4.0% at 122keV

CZT – ASIC applications Bone Densitometry – GE Lunar Detector 16 CZT crystals 16 pixels 3 x 7 x 3 mm 3 2 front-end ASICs DEXA (Dual Energy X-ray Absorptiometry) ASICs replaced 17 circuit boards (over 500 components) and improved performances

Highly segmented detectors Benefits: Position Resolution –pixel pitch ~ 1/  N Energy Resolution: –C DET ~ 1/N –I DARK ~ 1/N –Pulse Shaping time ~ N Rate capability –pileup ~ 1/N Benefits: Position Resolution –pixel pitch ~ 1/  N Energy Resolution: –C DET ~ 1/N –I DARK ~ 1/N –Pulse Shaping time ~ N Rate capability –pileup ~ 1/N N=1N=9N=25N=49 Drawbacks: Interconnect density –density ~ N Electronics channel count –cost ~ N –power ~ N Drawbacks: Interconnect density –density ~ N Electronics channel count –cost ~ N –power ~ N DC

Data concentration optimization ADCP/SDAQ Analog Memory + Analog Multiplex can be deadtimeless complex control long readout time needs trigger + multiple samples Both: slow inaccurate inefficient can’t trigger on randoms Both: slow inaccurate inefficient can’t trigger on randoms ADC P/SDAQCONCENTRATOR Track-and-Hold + Analog Multiplex unbuffered => deadtime long readout time needs accurate trigger

Pulse amplitude extraction : classical CMOS configurations in HOLD C h out HOLD ­ timing signal needed ­ switch charge injection ­ poor drive capability ­ deadtime until readout + power dissipation sample/hold - + in C h out reset peak-found (timing signal) +Vdd ­ accuracy impaired by op-amp offsets and CMRR ­ poor drive capability ­ deadtime until readout + self-triggered + timing signal peak detect/hold (PDH) PD

The two-phase PDH concept Write phase behaves like classical configuration + - in C h out v off Read phase op-amp re-used as buffer offset and CMMR errors canceled enables rail-to-rail sensing good drive capability self-switching (peak found) + - in C h out v off

Two-phase PDH : offset cancellation chip 1 – negative offsetchip 2 – positive offset

Two-phase PDH : performance Parameter: Value: PDDv1 (PDDv2) Technology0.35 um CMOS DP4M Supply voltage3.3V Input voltage range V Minimum peaking time500 (50) ns Absolute accuracy< 0.20% Linearity< 0.05% Droop rate250 mV/s Timing accuracy5 ns Power dissipation3.5 (2.0) mW/ch PDDv1 : absolute accuracy

Derandomization with N two-phase PDHs (PDD) measured derandomization ( M=16, N = 2 ) ADC N two-phase PDH output MUX M front-end channels arbitration logic & crosspoint switch PDD DD

Derandomization efficiency vs N The larger is N, the lower can be the fo/fi ratio

blocking probabilityTAC linearity Derandomization efficiency and TAC linearity

32-channels PDD ASIC CROSSPOINT 32:8 INPUTS (32) COMPARATORS MUX 8:1 ARBITRATION ~5ns PD/TACs (8) t p > 50ns... channel exclude/include readout mode TAC gain TAC mode SPI INTERFACE CONFIGURATION MEMORY digital convenience outputs analog monitor powerdown FULL EMPTY ADDRESS AMPLITUDE TIME One-chip solution N CHAN = 32, N PD = 8 Dual-mode TAC –risetime –time of occurrence Amplitude, address, timing outputs 50 ns minimum pulsewidth t ARB ~ 5 ns Rate capability ~ 10 MHz SPI interface: –serial configuration of TAC gain and mode –arbitration locking –channel exclusion –powerdown –analog monitor –Digital convenience outputs (used for configuring companion amplifier chip) FIFO-like control and readout interface One-chip solution N CHAN = 32, N PD = 8 Dual-mode TAC –risetime –time of occurrence Amplitude, address, timing outputs 50 ns minimum pulsewidth t ARB ~ 5 ns Rate capability ~ 10 MHz SPI interface: –serial configuration of TAC gain and mode –arbitration locking –channel exclusion –powerdown –analog monitor –Digital convenience outputs (used for configuring companion amplifier chip) FIFO-like control and readout interface

32-channels PDD ASIC : layout size : 3.2 x 3.2 mm² power : 2mW / channel technology: 0.35µm CMOS DP4M

Typical fluorescence EXAFS measurement geometry Sample Detector  Resolution  Rate sensor electronics  front-end  processing  readout FL

Resolution vs rate

Optimum pixellation  charge sharing (  20µm/side) and trapping (gap/side) : empirical

Optimum pixellation

quadrant (8  12=96 pixels) 96-channel front-end (3  32 channel ASICs) Peltier 20mm Si n-type high resistivity wafer 250µm thick, N = 384 p +  1mm  1mm pixels, gaps 10µm, 30µm, 50µm

Beam through sample sensor

Interconnecting pixel to front-end electronics ASIC sensor + interconnect parasitic + bond length - fringe capacitance - charge sharing and trapping + bond length - interconnect parasitic - dielectric losses ASIC sensor ASIC sensor ASIC sensor + interconnect parasitic - constraint on ASIC area and layout - fluorescence from Pb (Sn/Pb/Ag) - illumination from segmented side + dielectric losses  interconnect parasitic - bond length 6mm  10µm, Si 3 N 4 (  r =6.5,tan(  )=0.001), 3µm, C i  1.2pF IC

quadrant Sensor – ASIC photo

Front-end channel overview pixel charge preamplifier discriminators & counters low-noise reset high-order settable filter output baseline stabilizer 1 threshold 2 window 6-bit DACs for fine adjustment 24-bit SPI shaper readout  5 mW  3 mW Technology CMOS 0.35µm 3.3V 2P4M LA

Layouts 3  24-bit COUNTERS - 690µm 100µm 4  6-bit DACs analog - 590µm DACS digital - 170µm 5  COMPARATORS - 130µm 100µm DAC cell COUNTER cell

ASIC overview CMOS 0.35µm 3.3V 2P4M 180,000 MOSFETs, size 3.6  6.3 mm 2 8mW / channel 32 readout channels self adaptable continuous reset high order shaper settable peaking time (0.5µs, 1µs, 2µs, 4µs) settable gain (750mV/fC, 1500mV/fC) band-gap referenced output baseline output baseline stabilization (BLH) 1 threshold and 2 window discriminators 4  6-bit DACs for fine window adjustments 3  24-bit counters test mode analog output monitor pixel leakage current monitor Serial Peripheral Interface (SPI) global settings monitors enabling test enabling channels masking DACs setting counters readout

charge preamplifiershaper with BLHdiscriminators and DACscounters 32 channels, 3.6  6.3 mm 2 ASIC photo

Settable gain and peaking time EX

Correction of threshold dispersion

Energy resolution

Si – ASIC spectra measurements

Readout RO

Readout interface

Automatic threshold equalization before correction after correction

Current EXAFS detector head - preamplifiers rack – shapers …  100 channels, > 350 eV, < 1 MHz

New EXAFS detector  400 channels, 10MHz

Acknowledgment P. O’Connor Layout : A. Kandasamy Technical : J. Triolo, D. Pinelli