Simulation of rovibrational absorption spectra for XY 3 molecules Ingredients: Potential energy surface Dipole moment surfaces (Rovibrational energies.

Slides:



Advertisements
Similar presentations
Simulating the spectrum of the water dimer in the far infrared and visible Ross E. A. Kelly, Matt J. Barber, Jonathan Tennyson Department of Physics and.
Advertisements

Modelling Water Dimer Band Intensities and Spectra Matt Barber Jonathan Tennyson University College London 10 th February 2011
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London 13 th May 2010
Understanding Complex Spectral Signatures of Embedded Excess Protons in Molecular Scaffolds Andrew F. DeBlase Advisor: Mark A. Johnson 68 th Internatinal.
“Rotational Energy Transfer in o - / p -H 2 + HD” Renat A. Sultanov and Dennis Guster BCRL, St. Cloud State University St. Cloud, MN June 20, 2007 OSU.
Introduction to Molecular Orbitals
A L INE L IST FOR H YDROGEN S ULPHIDE (H 2 S) Ala’a A. A. Azzam J. Tennyson and S. Yurchencko Department of Physics and Astronomy, University College London,
Photoelectron Spectroscopy Lecture 3: vibrational/rotational structure –Vibrational selection rules –Franck-Condon Effect –Information on bonding –Ionization.
James S.A. Brooke a *, Peter F. Bernath b, Colin M. Western c, Timothy W. Schmidt d, George B. Bacskay d, Marc C. van Hermert e & Gerrit C. Groenenboom.
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
PY3P05 Lecture 14: Molecular structure oRotational transitions oVibrational transitions oElectronic transitions.
Vibrational Spectroscopy I
The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
Chemistry 6440 / 7440 Vibrational Frequency Calculations.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
Modelling Water Dimer Band Intensities and Spectra Matt Barber Jonathan Tennyson University College London 29 th September 2010
 ( ) 0+   ( ) 0–  4 1 Results at 2.5 microns 2 +( ) 1 II (
Vibrations of polyatomic molecules
Simulating the spectrum of the water dimer in the far infrared and visible Ross E. A. Kelly, Matt J. Barber, Jonathan Tennyson Department of Physics and.
Theoretical work on the water monomer Matt Barber Jonathan Tennyson University College London
High-accuracy ab initio water line intensities Lorenzo Lodi University College London Department of Physics & Astronomy.
Lecture 5: Molecular Physics and Biophysics Comparison with atoms No spherical symmetry  symmetry groups Molecules have three degrees of freedom Electronic,
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
Vibrational and Rotational Spectroscopy
Vibrational Spectroscopy
Objectives of this course
Einstein A coefficients for vibrational-rotational transitions of NO
Ab initio classical dynamics simulations of CO 2 line-mixing effects in infrared and Raman bands Julien LAMOUROUX, Jean-Michel HARTMANN, Ha TRAN L.I.S.A.,
Revisit vibrational Spectroscopy
Columbus, June , 2005 Stark Effect in X 2 Y 4 Molecules: Application to Ethylene M. ROTGER, W. RABALLAND, V. BOUDON, and M. LOËTE Laboratoire de.
Jonathan Tennyson Physics and Astronomy UCL Paris, Nov 2008 Molecular linelists for extrasolar planets Artist’s impression of HD189733b C. Carreau, ESA.
Meng Huang and Anne B. McCoy Department of Chemistry and Biochemistry The Ohio State Univerisity.
Theoretical Modelling of the Water Dimer: Progress and Current Direction Ross E. A. Kelly, Matt Barber, & Jonathan Tennyson Department of Physics & Astronomy.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
Examples and Exercises. Normalizing a Wavefunction Find a normalizing factor of the hydrogen’s electron wavefunction Function of r, using spherical coordinate.
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
MODELING MATTER AT NANOSCALES 3. Empirical classical PES and typical procedures of optimization Classical potentials.
DIMETHYL -ETHER THREE DIMENTIONAL SPECTRA M. VILLA U.A.M.-I. (México) and M. L. SENENT C.S.I.C. (Spain)
Molecular Spectroscopy Symposium June 2013 Modeling the Spectrum of the 2 2 and 4 States of Ammonia to Experimental Accuracy John C. Pearson.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
A NEW 2 Σ Σ + TRANSITION OF PtF BY INTRACAVITY LASER ABSORPTION SPECTROSCOPY LEAH C O'BRIEN, TAYLOR DAHMS, KAITLIN A WOMACK Department of Chemistry,
Ohio State (Current and recent): Laura Dzugan Jason FordSamantha Horvath Meng Huang Zhou LinMelanie Marlett Bernice Opoku-AgyemanAndrew PetitBethany Wellen.
70th ISMS Vibration-Rotation Analysis of the 13 CO 2 Asymmetric Stretch Fundamental Band in Ambient Air for the Physical Chemistry Teaching Laboratory.
THEORETICAL INVESTIGATION OF LARGE AMPLITUDE MOTION IN THE METHYL PEROXY RADICAL Gabriel Just, Anne McCoy and Terry Miller The Ohio State University.
Mohammed Gharaibeh, Fumie X. Sunahori, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Riccardo Tarroni Dipartimento di Chimica.
EXPERIMENTAL TRANSMISSION SPECTRA OF HOT AMMONIA IN THE INFRARED Monday, June 22 nd 2015 ISMS 70 th Meeting Champaign, Illinois EXPERIMENTAL TRANSMISSION.
An Analytic 3-Dimensional Potential Energy Surface for CO 2 -He and Its Predicted Infrared Spectrum Hui Li, Robert J. Le Roy υ International Symposium.
Cosmological variation of the proton-to-electron mass ratio and the spectrum of H 2 Ruth Buning Bachelor project 2004.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
Molecules in highly excited rotational states J  100.
SO 3 Forbidden rotational spectrum Rovibrational energy cluster formation.
High-Resolution Near-Infrared Spectroscopy of H 3 + Above the Barrier to Linearity Jennifer Gottfried and Takeshi Oka University of Chicago Benjamin J.
HOT EMISSION SPECTRA FOR ASTRONOMICAL APPLICATIONS: CH 4 & NH 3 R. Hargreaves, L. Michaux, G. Li, C. Beale, M. Irfan and P. F. Bernath 1 Departments of.
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
~ ~ DETERMINATION OF THE TRANSITION DIPOLE MOMENT OF THE A - X
Computational Chemistry:
Chapter 2 Molecular Mechanics
High-Resolution Spectroscopy and Analysis of the n3/2n4 Dyad of CF4
SIMULATIONS OF VIBRONIC LEVELS IN DEGENERATE ELECTRONIC STATES IN THE PRESENCE OF JAHN-TELLER COUPLING – EXPANSION OF PES THROUGH THIRD ORDER VADIM L.
Ab initio calculations of highly excited NH3 levels
Anharmonicity In real molecules, highly sensitive vibrational spectroscopy can detect overtones, which are transitions originating from the n = 0 state.
Analysis of the Rotationally Resolved Spectra to the Degenerate (
Probability of Finding
Harmonic Oscillator Harmonic Oscillator W. Udo Schröder, 2004.
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
Harmonic Oscillator.
Rotational Energy Levels for rigid rotor: Where Rotational Spectra of Rigid Diatomic molecule. BY G JANAKIRAMAN EGS A&S COLLAGE
Presentation transcript:

Simulation of rovibrational absorption spectra for XY 3 molecules Ingredients: Potential energy surface Dipole moment surfaces (Rovibrational energies and wavefunctions)

Morse oscillators Two-dimensional isotropic harmonic oscillators for doubly degenerate bending vibrations Numerov-Cooley solution of inversion Schrödinger equation for Rigid rotor eigenfunctions [1] H. Lin et al., J. Chem. Phys. 117, (2002) [2] S.N. Yurchenko et al., Mol. Phys. 103, 359 (2005) and references given there. Energies/wavefunctions from variational rotation-vibration calculations Basis functions: Hougen-Bunker-Johns theory: Eckart & Sayvetz conditions  T nuc = expansion in the  i 

Vibrational basis set: J ≤ 18 CCSD(T)/aug-cc-pVTZ, points [2] extrapolated to CBS+ level (3814 points, complete basis set, relativistic effects) [1] S. N. Yurchenko, M. Carvajal, H. Lin, J. J. Zheng, W. Thiel, and P. Jensen, J. Chem. Phys. 122, (2005). [2] H. Lin, J. J. Zheng, S. N. Yurchenko, P. Jensen, and W. Thiel, in preparation. Variational rotation-vibration calculations for NH 3 Dipole moment surfaces: Potential energy surface: CCSD(T)/aug-cc-pVTZ, points [1] Frozen-core-approximation Numerical finite-difference procedure

“Molecular Bond” representation [1] for general use [1] S.-G. He, J. J. Zheng, S.-M. Hu, H. Lin, Y. Ding, X.-H. Wang, and Q.-S. Zhu, J. Chem. Phys. 114, 7018 (2001). Electronically averaged dipole moment for NH 3 expressed as Expansion in linearized displacement coordinates ( 14 NH 3 ) for use in present calculations All parameter values are available on request! is a parameterized function of internal vibrational coordinates

Vibrational transition moments for 14 NH 3 [1] P. Pracna, V. Š pirko, and W. P. Kraemer, J. Mol. Spectrosc. 136, 317 (1989). [2] R. Marquardt, M. Quack, I. Thanopulos, and D. Luckhaus, J. Chem. Phys. 119, (2003).

Vibrational transition moments for 14 NH 3 [1] P. Pracna, V. Š pirko, and W. P. Kraemer, J. Mol. Spectrosc. 136, 317 (1989). [2] R. Marquardt, M. Quack, I. Thanopulos, and D. Luckhaus, J. Chem. Phys. 119, (2003).

Absorption intensity simulation: XY 3 molecules [1] S. N. Yurchenko, M. Carvajal, H. Lin, J. J. Zheng, W. Thiel, and P. Jensen, J. Chem. Phys. 122, (2005). [2] S. N. Yurchenko, W. Thiel, M. Carvajal, H. Lin, and P. Jensen, Adv. Quant. Chem., in press.

The 4 and 2 2 absorption bands of 14 NH 3 Experiment: C. Cottaz, G. Tarrago, I. Kleiner, L. R. Brown, J. S. Margolis, R. L. Poynter, H. M. Pickett, T. Fouchet, P. Drossart, and E. Lellouch, J. Mol. Spectrosc. 203, 285 (2000).

The 1 and 3 absorption bands of 14 NH 3 Experiment: I. Kleiner, L. R. Brown, G. Tarrago, Q.-L. Kou, N. Picqué, G. Guelachvili, V. Dana, and J.-Y. Mandin, J. Mol. Spectrosc. 193, 46 (1999).

The and 2 4  2 absorption bands of 14 NH 3 Experiment: I. Kleiner, L. R. Brown, G. Tarrago, Q.-L. Kou, N. Picqué, G. Guelachvili, V. Dana, and J.-Y. Mandin, J. Mol. Spectrosc. 193, 46 (1999).

Thanks & Acknowledgments The principal doer: Sergei N. Yurchenko, Wuppertal, Ottawa, Mülheim Other doers: Miguel Carvajal, Huelva Hai Lin, Minneapolis Jing Jing Zheng, Mülheim A fellow ponderer: Walter Thiel, Mülheim Thanks for support from the European Commission, the German Research Council (DFG), and the Foundation of the German Chemical Industry (Fonds der Chemie).