VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, 12-14 June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.

Slides:



Advertisements
Similar presentations
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Advertisements

Kondo Physics from a Quantum Information Perspective
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
12 June, 2006Istanbul, part I1 Mean Field Methods for Nuclear Structure Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock- Bogoliubov Approaches.
Numerical Method for Computing Ground States of Spin-1 Bose-Einstein Condensates Fong Yin Lim Department of Mathematics and Center for Computational Science.
On the formulation of a functional theory for pairing with particle number restoration Guillaume Hupin GANIL, Caen FRANCE Collaborators : M. Bender (CENBG)
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Anderson localization in BECs
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard) Mehrtash Babadi (Harvard) Lode Pollet.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Theory of interacting Bose and Fermi gases in traps
QUANTUM DEGENERATE BOSE SYSTEMS IN LOW DIMENSIONS G. Astrakharchik S. Giorgini Istituto Nazionale per la Fisica della Materia Research and Development.
System and definitions In harmonic trap (ideal): er.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Cold atoms Lecture October BEC for interacting particles Description of the interaction Mean field approximation: GP equation Variational.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Quantum Monte Carlo methods applied to ultracold gases Stefano Giorgini Istituto Nazionale per la Fisica della Materia Research and Development Center.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
E. Kuhnle, P. Dyke, M. Mark, Chris Vale S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu,
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Phase Separation and Dynamics of a Two Component Bose-Einstein Condensate.
Theory of interacting Bose and Fermi gases in traps Sandro Stringari University of Trento Crete, July 2007 Summer School on Bose-Einstein Condensation.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Resonance Scattering in optical lattices and Molecules 崔晓玲 (IOP, CASTU) Collaborators: 王玉鹏 (IOP), Fei Zhou (UBC) 大连.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Lecture 2. Why BEC is linked with single particle quantum behaviour over macroscopic length scales Interference between separately prepared condensates.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Relativistic BCS-BEC Crossover in a boson-fermion Model
Eiji Nakano, Dept. of Physics, National Taiwan University Outline: 1)Experimental and theoretical background 2)Epsilon expansion method at finite scattering.
Application of the operator product expansion and sum rules to the study of the single-particle spectral density of the unitary Fermi gas Seminar at Yonsei.
Unitarity potentials and neutron matter at unitary limit T.T.S. Kuo (Stony Brook) H. Dong (Stony Brook), R. Machleidt (Idaho) Collaborators:
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
VERSITET NIKOLAJ THOMAS ZINNER DEPARTMENT OF PHYSICS AND ASTRONOMY AARHUS UNIVERSITET OCTOBER UNI STRONGLY INTERACTING QUANTUM PARTICLES IN ONE.
Ingrid Bausmerth Alessio Recati Sandro Stringari Ingrid Bausmerth Alessio Recati Sandro Stringari Chandrasekhar-Clogston limit in Fermi mixtures with unequal.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Copenhagen, June 15, 2006 Unitary Polarized Fermi Gases Erich J. Mueller Cornell University Sourish Basu Theja DeSilva NSF, Sloan, CCMR Outline: Interesting.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Optically Trapped Low-Dimensional Bose Gases in Random Environment
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
F. C HAPPERT N. P ILLET, M. G IROD AND J.-F. B ERGER CEA, DAM, DIF THE D2 GOGNY INTERACTION F. C HAPPERT ET AL., P HYS. R EV. C 91, (2015)
Nuclear density functional theory with a semi-contact 3-body interaction Denis Lacroix IPN Orsay Outline Infinite matter Results Energy density function.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Rotating FFLO Superfluid in cold atom gases Niigata University, Youichi Yanase Tomohiro Yoshida 2012 Feb 13, GCOE シンポジウム「階層の連結」, Kyoto University.
Cold atoms Lecture th November, Preliminary plan/reality in the fall term Lecture 1 … Lecture 2 … Lecture 3 … Lecture 4 … Lecture 5 … Lecture.
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Agenda Brief overview of dilute ultra-cold gases
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
ultracold atomic gases
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
One-Dimensional Bose Gases with N-Body Attractive Interactions
Yan He 贺言 Sichuan University 四川大学
Presentation transcript:

VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université Pierre et Marie Curie (Paris)

Motivations 2D experiments in the degenerate regime:  Innsbrück (Rudy Grimm)  Firenze (Massimo Inguscio)  Villetaneuse (Vincent Lorent)  MIT (Wolgang Ketterle) Why trapped 2D Bose gas interesting ?  Thermal fluctuations  Interplay between KT and BEC  Non trivial interaction induced by the geometry  Beyond mean-field effects

Summary Brief review of the actual experimental settings Back to the two-body problem Contact condition versus Pseudo-potential Variational Formulation of Hartree-Fock-Bogolubov (HFB) Numerical Results

The actual experimental settings MIT Firenze Innsbrück Villetaneuse Reach the 2D regime by decreasing N in an anisotropic trap A. Görlitz and al. Phys. Rev. Lett 87, (2001) Use a 1D optical lattice  Slices of 2D condensates S. Burger and al. Europhys. Lett., 57, pp. 1-6 (2002) Evanescent-wave trapping S. Jochim and al. Phys. Rev. Lett., 90, (2003) Evanescent-wave trapping Anisotropy parameter

Atoms trapped in a planar wave guide Two-body problem: Zero range approach: Eigenvalue problem defined by the contact conditions : The “2D induced” scattering length Maxim Olshanii (private communication) Dima Petrov and Gora Shlyapnikov, Phys. Rev. A 64, (2001)

The pseudo-potential approach Motivation : Hamiltonian formulation of the problem Example : the Fermi-Huang potential in 3D Construct a potential which leads to the contact condition of the 2-body problem Zero range potentialRegularizing operator The «  potential » in the 2D world 2-body t-matrix at energy

Many-body problem for trapped atoms 1)Contact conditions 2)Pseudo-potential Validity of the zero range approach Validity of the mean-field approach Two possibilities Constraints on the mean density

Summary of the zero-range approach Mean inter-particle spacing Possible description of a molecular phase  freedom a 2D >0 can be tuned via a 3D (Feshbach resonance) highly anisotropic traps Observables do not depend on the particular value of  Possible study of a highly correlated dilute system

Condensate/Quasi-condensate T=0K + Thomas-Fermi Near T=Tc Almost BEC Phase in near future experiments 2D character Actual experiments

The ingredients of HFB U(1) symmetry breaking approach (Phase of the condensate fixed : T<<T  ) Gaussian Variational ansatz (Number of atoms fluctuates) Use the 2D zero range pseudo-potential  A Dangerous game ! ! ! The atomic Bose gas is not the ground state of the system BEC Phase

HFB Equations Generalized Gross-Pitaevskii equation “Static spectrum” Implicit Born approximation Pairing field (satisfies the contact condition)

The gap spectrum “disaster”  Change the phase of  cost no energy  Anomalous mode solution of the linearized time dependent equations (RPA)  (  *  NOT SOLUTION (in general) of the static HFB equations Parameters of the Gaussian ansatz for the density operator « static spectrum » Eigen-energies of the RPA equations « dynamic spectrum » Spurious energy scale in the thermodynamical properties

Gapless HFB Search   such that Impose that the anomalous mode is solution of the static HFB equations

Link with the usual regularizing procedure Standard approach : At the Born level UV-div …for the next order systematic determination of  beyond the LDA procedure Variational approach

2D Equation Of State (T=0) HFB EOS Popov’s EOS Schick’s EOS (For Hydrogen : ) Possible to probe the EOS using a Feshbach resonance ! (Example: K=100)

Thomas-Fermi Limit Trap parameters : Comparison between … LDA +Popov EOS ….and the full variational scheme

Velocity effects on the coupling constant 2-body scattering theory with  * determined by the mode amplitudes (Large distance behavior) Effective coupling constant Expect velocity dependence at the mean field level

The anomalous mode of the vortex Understanding the tragic fate of a single vortex The unexpected stabilization of the core at finite temperature D.S. Rokhsar, Phys. Rev. Lett 79, 2164 (1997) T. Isoshima and K. Machida, Phys. Rev. A 59, 2203 (1999) Usual self-consistent equation Effective “pining potential” for the vortex Anomalous mode Vortex core

Restoration of the instability L ocal D ensity A ppoximation for the t-matrix Full variational approach function of the local chemical potentialdepends on the configuration Calculate the “static spectrum” without thermalizing the anomalous mode

Conclusions and perspectives >>1 is necessary for observing 2D many-body properties Closed Formalism from the 2 body problem which includes velocity effects at the mean-field level  beyond LDA Collective modes : T ime D ependent HFB  RPA  a possible way to probe the EOS ? Variational description of the quasi-condensate phase

Appendix 1) Minimizing the Grand-potential with respect to h,  3) An equivalent condition for searching    4) Numerical procedure  2) The “gap equation