Climate sensitivity: what observations tell us about model predictions Corinne Le Quéré Max-Planck-Institut für Biogeochemie, Jena, Germany Acknowledgements:

Slides:



Advertisements
Similar presentations
Assessing the efficiency of iron fertilization on atmospheric CO2 using an intermediate complexity ecosystem model of the global ocean Olivier Aumont 1.
Advertisements

Physical / Chemical Drivers of the Ocean in a High CO 2 World Laurent Bopp IPSL / LSCE, Gif s/ Yvette, France.
1 Margaret Leinen Chief Science Officer Climos Oceans: a carbon sink or sinking ecosystems?
Ocean Biogeochemistry (C, O 2, N, P) Achievements and challenges Nicolas Gruber Environmental Physics, ETH Zürich, Zurich, Switzerland. Using input from.
Climate Change and the Oceans
NPZD DGOM Interannual chla variability (mgChl/m3) PISCES-T Observations (SeaWiFS) Calcifiers PO 4 Fe PO 4 DOCZoo POC export.
Monique Messié & Francisco Chavez
Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
Biological pump Low latitude versus high latitudes.
Interactions between ocean biogeochemistry and climate Guest presentation for AT 762 Taka Ito How does marine biogeochemistry interact with climate? What.
Changes in the Southern Ocean biological export production over the period Marie-F. Racault, Corinne Le Quéré & Erik Buitenhuis.
CO 2 flux in the North Pacific Alan Cohn May 10, 2006.
Evolution of the El Niño Southern Oscillation (ENSO) from the Last Ice Age to Today Andy Bush Dept. of Earth & Atmospheric Sciences University of Alberta.
Lecture 10: Ocean Carbonate Chemistry: Ocean Distributions Controls on Distributions What is the distribution of CO 2 added to the ocean? See Section 4.4.
Impact of river sources of P, Si and Fe on coastal biogeochemistry da Cunha 1, L.C., Le Quéré 1, C., Buitenhuis 1, E.T., Giraud 1, X. & Ludwig 2, W. 1.
OCN520 Fall 2009 Mid-Term #2 Review Since Mid-Term #1 Ocean Carbonate Distributions Ocean Acidification Stable Isotopes Radioactive Isotopes Nutrients.
Ecosystem composition and CO 2 flux variability Corinne Le Quéré Max-Planck-Institut für Biogeochemie, Jena, Germany now at University of East Anglia/British.
MODELLING THE FEEDBACKS BETWEEN PHYTOPLANKTON AND GLOBAL OCEAN PHYSICS 1 Max-Planck-Institut für Biogeochemie, Jena, Germany. 2 University of East Anglia,
Observations and modeling the ocean Fe cycle: Role in the carbon cycle and state of understanding Ed Boyle Earth, Atmospheric and Planetary Sciences Massachusetts.
Introduction to Ocean Circulation - Geography 163 Wind-driven circulation of major gyres & surface currents Buoyancy-driven circulation linking the major.
Last Time - Short Term Climate Change  Methods to Document Climate Change 1. Sedimentation 2. Ice cores 3. Dendrochronolgy 4. Coral Reefs 5. Pollen 6.
Nick Stephens Greencycles Mid-Term Review meeting 21/02/2007 1/18 Ocean Biogeochemistry Nicholas Stephens Max-Planck-Institut für Biogeochemie, Jena.
Monterey Bay Time Series - El Niños during and Transition from El Viejo to La Vieja - The age of dinoflagellates?
Ecosystem composition and export production variability Corinne Le Quéré, Erik Buitenhuis, Christine Klaas Max-Planck-Institute for Biogeochemistry, Germany.
OPA – PlankTOM5.0 - DMS Meike Vogt * Corinne Le Quéré Erik T. Buitenhuis Sergio Vallina * Laurent Bopp.
Lecture 10: Ocean Carbonate Chemistry: Ocean Distributions Controls on Distributions What is the distribution of CO 2 added to the ocean? See Section 4.4.
The Anthropogenic Ocean Carbon Sink Alan Cohn March 29, 2006
Vulnerability of the ocean biological pump Corinne Le Quéré University of East Anglia and British Antarctic Survey See notes in individual slides.
Paleoclimatology Why is it important? Angela Colbert Climate Modeling Group October 24, 2011.
The Marine carbon cycle. Carbonate chemistry Carbon pumps Sea surface pCO 2 and air-sea flux The sink for anthropogenic CO 2.
The Global Ocean Carbon Cycle Rik Wanninkhof, NOAA/AOML Annual OCO review, June 2007: Celebrating Our Past, Observing our Present, Predicting our Future:
Climate modeling: where are we headed? Interactive biogeochemistry Large ensemble simulations (multi-century) Seasonal-interannual forecasts High resolution.
The Marine carbon cycle. Carbonate chemistry Carbon pumps Sea surface pCO 2 and air-sea flux The sink for anthropogenic CO 2.
Results from the NCAR CSM1.4- carbon model at Bern Thomas Frölicher Climate and Environmental Physics, Physics Institute, University of Bern 1.Modeled.
Natural and Anthropogenic Carbon-Climate System Feedbacks Scott C. Doney 1, Keith Lindsay 2, Inez Fung 3 & Jasmin John 3 1-Woods Hole Oceanographic Institution;
Equatorial Pacific primary productivity: Spatial and temporal variability and links to carbon cycling Pete Strutton College of Oceanic and Atmospheric.
The Sea Floor as a Sediment Trap: Contributions to JGOFS from Benthic Flux Studies Richard A. Jahnke Skidaway Institute of Oceanography Milestones and.
What can O 2 tell us about the climate change in the oceans? Taka Ito School of Earth and Atmospheric Sciences Georgia Institute.
Iron and Biogeochemical Cycles
Impact of vertical flux simulation on surface pCO 2 Joachim Segschneider 1, Iris Kriest 2, Ernst Maier-Reimer 1, Marion Gehlen 3, Birgit Schneider 3 1.
Third annual CarboOcean meeting, 4.-7.December 2007, Bremen, Segschneider et al. Uncertainties of model simulations of anthropogenic carbon uptake J. Segschneider,
Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum Maher et al., 2010, Earth-Science.
Remote input of nutrients in a changing climate
Interannual Time Scales: ENSO Decadal Time Scales: Basin Wide Variability (e.g. Pacific Decadal Oscillation, North Atlantic Oscillation) Longer Time Scales:
The Carbon Cycle within the Oceans Allyn Clarke With much help from Ken Denman, Glen Harrison and others.
CO 2 and Climate Change. Lisiecki & Raymo,
ATOC 220 Global Carbon Cycle Recent change in atmospheric carbon The global C cycle and why is the contemporary atmospheric C increasing? How much of the.
Interannual Variability in the Extratropical Ocean Carbon System
International Workshop for GODAR WESTPAC Global Ocean Data Archeology and Rescue: Scientific Needs from the Carbon Cycle Study in the Ocean Toshiro Saino.
Interannual Time Scales: ENSO Decadal Time Scales: Basin Wide Variability (e.g. Pacific Decadal Oscillation, North Atlantic Oscillation) Longer Time Scales:
Core Theme 5 – WP 17 Overview on Future Scenarios - Update on WP17 work (5 european modelling groups : IPSL, MPIM, Bern, Bergen, Hadley) - Strong link.
Marine Ecosystem Simulations in the Community Climate System Model
Climate feedback on the marine carbon cycle in CarboOcean Earth System Models J. Segschneider 1, E. Maier-Reimer 1 L. Bopp 2, J. Orr 2 1 Max-Planck-Institute.
CARBOOCEAN Annual Meeting – Solstrand, Norway 5-9 October 2009 WP17 Highlights: Future Scenarios with coupled carbon-climate models - 5 european modelling.
Interpreting the sedimentary record
Phytoplankton and Productivity
Doney, 2006 Nature 444: Behrenfeld et al., 2006 Nature 444: The changing ocean – Labrador Sea Ecosystem perspective.
Global Biogeochemical Cycles (2014) 28 Annual net community production and the biological carbon flux in the ocean Steven Emerson School of Oceanography,
Ralph Keeling Scripps Institution of Oceanography Global oceanic and land carbon sinks from the Scripps flask sampling networks.
Oceans and anthropogenic CO 2 By Monika Kopacz EPS 131.
Iron studies during JGOFS Philip Boyd
Biogeochemical Controls and Feedbacks on the Ocean Primary Production
Lecture 10: Ocean Carbonate Chemistry: Ocean Distributions
Surface Ocean pCO 2 and Air-Sea CO 2 -exchange in Coupled Models Birgit Schneider 1*, Laurent Bopp 1, Patricia Cadule 1, Thomas Frölicher 2, Marion Gehlen.
Impact of climate change on the global oceanic sink of CO 2 Corinne Le Quéré, University of East Anglia and British Antarctic Survey.
Modelling the effect of increasing pCO 2 on pelagic aragonite production and dissolution 1. Laboratoire des Sciences du Climat et de l'Environnement (LSCE),
Nitrous Oxide Focus Group Nitrous Oxide Focus Group launch event Friday February 22 nd, 2008 Dr Jan Kaiser Dr Parvadha Suntharalingam The stratospheric.
Modelling some Southern Ocean biogeochemical paradox P. Monfray (IPSL, Paris) Acknowledgments: L.Bopp, O.Aumont, C.Le Quéré & J.Orr Prepared for JGOFS-SOSG,
Iron and Biogeochemical Cycles
~90 ppmv -Cooler oceans decrease CO2 by 22 ppmv -Saltier oceans increase CO2 by 11 ppmv.
Presentation transcript:

Climate sensitivity: what observations tell us about model predictions Corinne Le Quéré Max-Planck-Institut für Biogeochemie, Jena, Germany Acknowledgements: Laurent Bopp, Karen Kohfeld, Erik Buitenhuis, Olivier Aumont

CO 2 sink (PgC/y) (J. Orr and OCMIP-2 participants) today no biology, no climate change time

CO 2 sink (PgC/y) (J. Orr and OCMIP-2 participants) Heimann and Maier- Reimer 1996 no biology, no climate change time Prentice et al. 2001, based on data from Manning 2001, Langenfelds et al., 1999, and Sabine et al., 2002 Le Quéré et al Takahashi et al Battle et al Gruber and Keeling 2001

CO 2 export production 100 yr predictions 100,000 yrs variations interannual variations outline

oceanic carbon cycle Silicifi ers N 2 fixers DMS producer s Calcifiers Nano phytoplankt on Fe NO 3 SiSi CaCO 3 DM S PO4PO4 NH 4 DOM biological activity physical transport CO 2 CO 2 + H 2 O + CO HCO - 3 chemical reactions 90

how do marine ecosystems respond to: elevated CO 2 warming nutrient supply stratification

physical response to elevated CO 2 Reduced CO 2 solubility Reduced vertical circulation (Sarmiento et al., in prep.)

oceanic carbon cycle Silicifi ers N 2 fixers DMS producer s Calcifiers Nano phytoplankt on Fe NO 3 SiSi CaCO 3 DM S PO4PO4 NH 4 DOM biological activity physical transport CO 2 CO 2 + H 2 O + CO HCO - 3 chemical reactions 90

diatoms DOM N 2 fixers DMS producers Calcifiers Nano phytoplankton Fe NO 3 SiSi CaCO 3 PO 4 NH 4 nutrient-based models (Najjar et al., 1992; Maier-Reimer 1993)

diatoms DOM N 2 fixers DMS producers Calcifiers Nano phytoplankton Fe NO 3 Si CaCO 3 NPZD PO 4 NH 4 (Fasham et al., 1993)

N 2 fixers DMS producers Calcifiers Nano phytoplankton Fe NO 3 Si CaCO 3 ecosystem models PO 4 NH 4 DOM (Aumont et al. 2003; Moore et al., 2001) diatoms

(Bopp 2001) N S equator latitude reduction in nutrient supply increase of oligotrophic gyres longer growing season Modelled changes in export production at 2xCO % -30 %

CO 2 sink (PgC/y) climate feedback (Prentice et al., 2001) time

CO 2 sink (PgC/y) CO 2 + climate (Prentice et al., 2001) time

(slide from J. Sarmiento)

CO 2 export production 100 yr predictions -5 to -15% [warming]0 to -6% [nutrient supply] - low lat + high lat 100,000 yrs variations interannual variations

CO 2 export production 100 yr predictions -5 to -15% [warming]-0 to -6% [nutrient supply] - low lat + high lat 100,000 yrs variations interannual variations

CO 2 (ppm) 0°C -8°C 280 ppm 200 ppm 5.8°C 1.4°C 960 ppm 550 ppm Temperature ( o C) 400,000 years 100,000 yrs variations (data from Petit et al., 1999)

 x2 over the ocean Circulation Changes (Simulation OPA model, O. Marti) Increased Sea -Ice in Winter (Crosta et al. 1998) Increased dust deposition on the ocean (Mahowald et al. 1999) Cooling of SST (CLIMAP 1981) Model simulations of the last glacial maximum (Bopp et al., 2003)

total LGM impact on export production (Bopp et al., 2003) decreased export production (-7 %) decreased atmospheric CO 2 (-30 ppm) gC/m2/y

total LGM impact on export production (Bopp et al., 2003) Diatoms Nano-phyto  Diatoms diatoms relative abundance Nano-phyto Diatomées Latitude iron LGM impact on export production increased export production (+6 %) but increase of oligotrophic gyres shift from nano-phyto to diatoms

Opal (SiO 2 ) Calcium Carbonate (CaCO 3 ) Organic Carbon Biomarker (C37 Alkenones) 10 Be 231 Pa Excess Barium Authigenic Uranium Authigenic Cadmium Benthic Foraminifera Fluxes Age Models Radiocarbon dating (AMS) Oxygen Isotope Stratigraphy Lithogenic Correlation Flux measurement Constant Flux Normalization ( 230 Th) Mass Accumulation Rates Sediment Concentration Evaluation of Paleo-Data Proxy Agreement How many? Percentage agreement Ranking Criteria: Ranked Classes: Paleo-Export Proxies: Data Confidence high medium low (Kohfeld et al., in prep.)

LGM-Stage 5ad LGM-today “Today ” Stage 5ad-today Stage 5a-d LGM dust CO 2 change in export production (Kohfeld et al., in prep.) time Unpublished map not available Unpublished map not available

/ OPA-PISCES model (Bopp et al. 2003) (gC m -2 yr -1 ) Data-base (Kohfeld et al., in prep.) change in export production

/ OPA-PISCES model (Bopp et al. 2003) (gC m -2 yr -1 ) Data-base (Kohfeld et al., in prep.) change in export production

Maximum effect with this model 41 ppm CO 2 drawdown with this model 30 ppm SST + SSS (+ sea ice + circ.) = –15 ppm Dust increase –15 ppm (Bopp et al., 2003)

dust CO 2 Watson et al., ppm Archer et al ppm Bopp et al. in press15 ppm ReferenceCO 2 reduction due to dust at the LGM (Watson et al., 2000) reasonable agreement considering the phasing of dust/CO 2 changes time

CO 2 export production 100 yr predictions -5 to -15% [warming]0 to -6% [nutrient supply] - low lat + high lat 100,000 yrs variations -8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left ~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio] interannual variations

CO 2 export production 100 yr predictions -5 to -15% [warming]0 to -6% [nutrient supply] - low lat + high lat 100,000 yrs variations -8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left ~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio] interannual variations

Le Quéré et al., in press CO 2 variability (Pg C/y) atmosphere Mean: 3.2 PgC/y interannual CO 2 variability time 20 years

(Le Quéré et al., 2003) CO 2 variability (Pg C/y) atmosphere ocean

(Bousquet et al., 2000; data from Feely et al., 1999) equatorial Pacific During El Nino events:CO 2 warming decreased upwelling decreased export production CO 2 variability (Pg C/y) MIT model ( McKinley 2002) Hamburg model (Winguth et al., 1994) OPA model (Le Quéré et al., 2000)

northern sub-tropics (Peylin et al., in prep) CO 2 variability (mol/m 2 /y) MIT model OPA model observations

North Atlantic (Gruber et al., 2002)

Chla (SeaWiFS) Standard deviation of interannual signal SST (Reynolds and Smith 1994) MLD (indirect estimate using SSH) SSH (TOPEX/Poseidon)

CO 2 export production 100 yr predictions -5 to -15% [warming]0 to -6% [nutrient supply] - low lat + high lat 100,000 yrs variations -8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left ~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio] interannual variations +/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/ ppm mid lat [solub.] +/ ppm high lat [circ + bio]

CO 2 export production 100 yr predictions -5 to -15% [warming]0 to -6% [nutrient supply] - low lat + high lat 100,000 yrs variations -8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left ~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio] interannual variations +/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/ ppm mid lat [solub.] +/ ppm high lat [circ + bio]

SeaWiFS chla, PP from Behrenfeld and Falkowski (1997), ef-ratio from Laws et al. (2000) Standard deviation of export production variability (mol C/m 2 /yr)

diatoms DOM N 2 fixers DMS producers Calcifiers Nano phytoplankton Fe NO 3 SiSi CaCO 3 PO 4 NH 4 nutrient-based models (HAMOCC3) (Maier-Reimer 1993)

SeaWiFS chla, PP from Behrenfeld and Falkowski (1997), ef-ratio from Laws et al. (2000) Standard deviation of export production variability (mol C/m 2 /yr) HAMOCC3

diatoms DOM N 2 fixers DMS producers Calcifiers Nano phytoplankton Fe NO 3 Si CaCO 3 NPZD PO 4 NH 4 (Aumont et al.,2002 based on Maier-Reimer and Six 1996)

SeaWiFS chla, PP from Behrenfeld and Falkowski (1997), ef-ratio from Laws et al. (2000) Standard deviation of export production variability (mol C/m 2 /yr) NPZD HAMOCC3

N 2 fixers DMS producers Calcifiers Nano phytoplankton Fe NO 3 Si CaCO 3 PISCES model based on plankton functional types PO 4 NH 4 DOM diatoms (Aumont et al., 2003; Bopp et al., 2003)

SeaWiFS chla, PP from Behrenfeld and Falkowski (1997), ef-ratio from Laws et al. (2000) Standard deviation of export production variability (mol C/m 2 /yr) PISCES NPZD HAMOCC3

Dynamic Green Ocean Model N 2 fixers DMS producers coccolith. Nano phytoplankton Fe NO 3 Si CaCO 3 PO 4 NH 4 DOM diatoms (Buitenhuis et al., 2003)

SeaWiFS chla, PP from Behrenfeld and Falkowski (1997), ef-ratio from Laws et al. (2000) Standard deviation of export production variability (mol C/m 2 /yr) DGOM 4 PISCES NPZD HAMOCC3 (Le Quéré et al., in prep.)

diatoms coccolithophorids nano- phytoplankton P Growth rate

(Chavez et al 2003)

CO 2 export production 100 yr predictions -5 to -15% [warming]0 to -6% [nutrient supply] - low lat + high lat 100,000 yrs variations -8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left ~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio] interannual variations +/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/ ppm mid lat [solub.] +/ ppm high lat [circ + bio] +/- 1%

CO 2 export production 100 yr predictions -5 to -15% [warming]0 to -6% [nutrient supply] - low lat + high lat 100,000 yrs variations -8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left ~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio] interannual variations +/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/ ppm mid lat [solub.] +/ ppm high lat [circ + bio] +/- 1%

CO 2 export production 100 yr predictions -5 to -15% [warming]0 to -6% [nutrient supply] - low lat + high lat 100,000 yrs variations -8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left ~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio] interannual variations +/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/ ppm mid lat [solub.] +/ ppm high lat [circ + bio] +/- 1%

CO 2 export production 100 yr predictions -5 to -15% [warming]0 to -6% [nutrient supply] - low lat + high lat 100,000 yrs variations -8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left ~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio] interannual variations +/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/ ppm mid lat [solub.] +/ ppm high lat [circ + bio] +/- 1%

CO 2 export production 100 yr predictions -5 to -15% [warming]0 to -6% [nutrient supply] - low lat + high lat 100,000 yrs variations -8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left ~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio] interannual variations +/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/ ppm mid lat [solub.] +/ ppm high lat [circ + bio] +/- 1% plankton functional types

CO 2 export production 100 yr predictions -5 to -15% [warming]0 to -6% [nutrient supply] - low lat + high lat 100,000 yrs variations -8 to -40 ppm [iron] -15 ppm [solub.] -25 to -75 ppm left ~0 [iron + circ] + mid-low lat [iron] - high lat [circ + bio] interannual variations +/- 0.3 ppm +/- 0.3 ppm tropics [circ] +/ ppm mid lat [solub.] +/ ppm high lat [circ + bio] +/- 1% plankton functional types linkages between biogeochemistry and physics (including the coastal ocean)

CO 2 (ppm) 0°C -8°C 280 ppm 200 ppm 5.8°C 1.4°C 960 ppm 550 ppm Temperature ( o C) 400,000 years CO 2 (ppm) 0°C -8°C 280 ppm 200 ppm 5.8°C 1.4°C 960 ppm 550 ppm Temperature ( o C) CO 2 (ppm) 0°C -8°C 280 ppm 200 ppm Temperature ( o C) 400,000 years 5.8°C 1.4°C 960 ppm 550 ppm 1850 JGOFS 2100 Vostok global