Cellular Respiration. CATABOLISM “ENTROPY” ENERGY FOR: ANABOLISMWORK Chemical Potential Energy.

Slides:



Advertisements
Similar presentations
Cellular Respiration 7.1 Glycolysis and Fermentation 7.2 Aerobic Respiration.
Advertisements

CELL RESPIRATION.
Ch 6 Cellular Respiration. Energy for life ECOSYSTEM Photosynthesis in chloroplasts Glucose Cellular respiration in mitochondria H2OH2O CO 2 O2O2  
Ch 9 Cellular Respiration Extracting usable energy from organic molecules.
Lesson 7: Harvesting of Energy “Cellular Respiration”
Biol 105 Lecture 6 Read Chapter 3 (pages 63 – 69)
Energy Releasing Pathways ATP
CELLULAR RESPIRATION BIOLOGY IB/ SL Option C.3.
…transferring a phosphate group to another molecule = phosphorylation -- use a little ATP to net a larger amount of kinetic E (work)
AP Biology Cellular Respiration- Breaking the bonds of sugar to produce ATP ATP.
AP Biology Cellular Respiration Part 2. Is Oxygen present?
Atoms and Bonds I. Atoms II. Bonds III. Biologically Important Molecules A. Water B. Carbohydrates C. Proteins.
 Organisms must take in energy from outside sources.  Energy is incorporated into organic molecules such as glucose in the process of photosynthesis.
The Krebs Cycle Biology 11 Advanced
Cell Respiration Chapter 9. Slide 2 of 33 Why Respire?  Living cells require energy transfusions to perform most of their tasks  From external sources.
Lecture #4Date _________ Chapter 9~ Cellular Respiration: Harvesting Chemical Energy.
CELLULAR RESPIRATION. Overall Process C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O + ENERGY Purpose: Organisms routinely break down complex molecules in controlled.
Objective: You will be able to compare and contrast the equations of respiration. Do Now: Read p. 221 What is the most important use of food?
Cellular respiration: Harvesting chemical energy.
How Cells Harvest Energy Chapter 6
Chp 9: Cellular Respiration. Figure 9-01 LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Cellular Respiration: Harvesting Chemical Energy AP Biology Ms. Haut.
Please put your test corrections in the appropriate file on the table by the door. (Please staple your corrections to your test packet.) Also, please get.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Catabolic Pathways and Production of ATP C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O.
1 Respiration Organisms can be classified based on how they obtain energy: Autotrophs –Able to produce their own organic molecules through photosynthesis.
Cellular Respiration: Harvesting Chemical Energy Chapter 9 Biology – Campbell Reece.
Cellular Respiration: Harvesting Chemical Energy
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.1 Cellular respiration – Is the most prevalent and efficient catabolic.
Lecture #4Date _________ Chapter 9~ Cellular Respiration: Harvesting Chemical Energy.
CELLULAR RESPIRATION and FERMENTATION. Energy Harvest Fermentation – partial breakdown w/o oxygen Cellular Respiration – most efficient, oxygen consumed,
LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most.
Chapter 9 Cellular Respiration: Harvesting Chemical Energy.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings What we have made so far in terms of energy GLYCOLYSISBRIDGEKREBS CYCLE.
Chapter 9: Cellular Respiration: Harvesting Chemical Energy.
Cellular Respiration in DETAIL H. Biology. The Stages of Cellular Respiration Respiration is a cumulative process of 3 metabolic stages 1. Glycolysis.
Oxidative Phosphorylation & Fermentation
Energy and Metabolism. I. Energy Basics A. Forms of Energy - energy is the capacity to cause change.
Chapter 6 Cellular Respiration. Outline Day 1 –Energy Flow and Carbon Cycling –Overview of Energy Metabolism –Redox Reactions –Electrons and Role of Oxygen.
Cellular Respiration An Overview. Principles of Energy Harvest Catabolic pathway √ Fermentation √Cellular Respiration C 6 H 12 O 6 + 6O2 ---> 6CO 2 +
Lecture #4Date _________ Chapter 9~ A Musical Journey Through Cellular Respiration Objective: How do organisms produce energy for themselves to do work?
AP Biology Cellular Respiration Overview Part 1. Process of Cellular Respiration.
LECTURE 3: ENERGY HARVEST. Oxygenic photosynthesisOldest Life ?
2.A.2 Organisms Capture and Store Energy Part II (Cellular Respiration) Organisms capture and store free energy for use in biological processes Organisms.
Ch. 6: Cellular Respiration Harvesting Chemical Energy.
Citric acid cycle and Oxidative phosphorylation Student.
AP Biology Cellular Respiration – Glycolysis, Krebs Cycle, and ETC Part 2.
Figure LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP.
Glycolysis and Cellular Respiration
Cellular Respiration - Conclusion
Cellular Respiration & Fermentation
Higher Biology Cellular Respiration Mr G R Davidson.
Cellular Respiration.
Respiration.
Cellular Respiration Harvesting Chemical Energy
The Process of Cellular Respiration
Cellular Respiration Remember: In order for cells to survive, it must have energy to do work!!! ATP is the energy that’s available to do work! How does.
Glycolysis You only need to remember the details of the “net”
Complex Organic Molecules Simpler waste Products w/ Catabolic pathways
Cellular Respiration Part 2
Cellular Respiration.
Cellular Respiration and Fermentation
Cellular Respiration: A Review
By: Lindsay Koenig, Hannah Watson, and Kayleen Smith
Cellular Respiration.
Cellular Respiration Part 2
Cellular Respiration.
Energy Harvest I. Cellular Respiration.
Energy in food is stored as carbohydrates (such as glucose), proteins & fats. Before that energy can be used by cells, it must be released and transferred.
How Cells Harvest Chemical Energy – Cellular Respiration
Presentation transcript:

Cellular Respiration

CATABOLISM “ENTROPY” ENERGY FOR: ANABOLISMWORK Chemical Potential Energy

Energy+ + Coupled Reaction

Energy+ + ATPADP + P + Energy Coupled Reaction

III. Cellular Respiration Overview:

MATTER and ENERGY in FOOD MONOMERS and WASTE DIGESTION AND CELLULAR RESPIRATION ADP + PATP

III. Cellular Respiration Overview: Focus on core process… Glucose metabolism GLYCOLYSIS

III. Cellular Respiration Overview: Focus on core process… Glucose metabolism GLYCOLYSIS Oxygen Present?Oxygen Absent? Aerobic Resp.Anaerobic Resp.

III. Cellular Respiration Overview: Focus on core process… Glucose metabolism GLYCOLYSIS Oxygen Present?Oxygen Absent? Fermentation A little ATP

III. Cellular Respiration Overview: Focus on core process… Glucose metabolism GLYCOLYSIS Oxygen Present?Oxygen Absent? Fermentation A little ATP Gateway CAC ETC LOTS OF ATP

III. Cellular Respiration Overview: 1. Glycolysis: - Occurs in presence OR absence of oxygen gas. - All cells do this! (very primitive pathway) - Occurs in the cytoplasm of all cells

LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP III. Cellular Respiration Overview: 1. Glycolysis:

LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP What's needed to keep the reaction going?

LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP What's needed to keep the reaction going? - glucose.... (moot)

LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP What's needed to keep the reaction going? - glucose ATP... but previous rxn made some, so that's there

LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP What's needed to keep the reaction going? - glucose ATP... but previous rxn made some, so that's there -and you need NAD to accept the electrons.... -(nicotinamide adenine dinucleotide)

LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP What's needed to keep the reaction going? - glucose ATP... but previous rxn made some, so that's there - and you need NAD to accept the electrons.... AS GLYCOLYSIS PROCEEDS, THE [NAD+] DECLINES AND CAN BECOME LIMITING....

LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP What's needed to keep the reaction going? - glucose ATP... but previous rxn made some, so that's there - and you need NAD to accept the electrons.... AS GLYCOLYSIS PROCEEDS, THE [NAD+] DECLINES AND CAN BECOME LIMITING.... CELLS HAVE EVOLVED TO RECYCLE NAD SO GLYCOLYSIS CAN CONTINUE....

LE 9-18 Pyruvate Glucose CYTOSOL No O 2 present Fermentation Ethanol or lactate Acetyl CoA MITOCHONDRION O 2 present Cellular respiration Citric acid cycle NAD+ PYRUVATE

III. Cellular Respiration Overview: 1.Glycolysis 2.Anaerobic Respiration

LE 9-17a + 2 H + P 2 Alcohol fermentation CO 2 2 NADH2 NAD + 2 Acetaldehyde 2 ATP 2 ADP + 2 i 2 Pyruvate 2 Ethanol Glucose Glycolysis

LE 9-17b i 2 Lactate Lactic acid fermentation + 2 H + 2 NADH2 NAD + 2 ATP 2 ADP + 2 P 2 Pyruvate Glucose Glycolysis Lactate

III. Cellular Respiration Overview: 1.Glycolysis 2.Anaerobic Respiration 3.Aerobic Respiration

III. Cellular Respiration Overview: 1.Glycolysis 2.Anaerobic Respiration 3.Aerobic Respiration - Had Glycolysis: C 6 (glucose) 2C 3 (pyruvate) + ATP, NADH a - Gateway step: 2C 3 2C 2 (acetyl) + 2C (CO 2 ) + NADH b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP c - Electron Transport Chain: convert energy in NADH, FADH to ATP

LE 9-10 Pyruvate NAD + Transport protein NADH + H + Coenzyme ACO 2 Acetyl Co A energy harvested as NADH Gateway step: 2C 3 2C 2 (acetyl) + 2C (CO 2 ) + NADH

III. Cellular Respiration Overview: 1.Glycolysis 2.Anaerobic Respiration 3.Aerobic Respiration - Had Glycolysis: C 6 (glucose) 2C 3 (pyruvate) + ATP, NADH a - Gateway step: 2C 3 2C 2 (acetyl) + 2C (CO 2 ) + NADH b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP c - Electron Transport Chain: convert energy in NADH, FADH to ATP

b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP

1. C 2 (acetyl) binds to C 4 (oxaloacetate), making a C 6 molecule (citrate)

b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP 1.C 2 (acetyl) binds to C 4 (oxaloacetate), making a C 6 molecule (citrate) 2.One C is broken off (CO 2 ) and NAD accepts energy (NADH)

b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP 1.C 2 (acetyl) binds to C 4 (oxaloacetate), making a C 6 molecule (citrate) 2.One C is broken off (CO 2 ) and NAD accepts energy (NADH) 3.The second C is broken off (CO 2 ) and NAD accepts the energy…at this point the acetyl group has been split!!

b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP 1.C 2 (acetyl) binds to C 4 (oxaloacetate), making a C 6 molecule (citrate) 2.One C is broken off (CO 2 ) and NAD accepts energy (NADH) 3.The second C is broken off (CO 2 ) and NAD accepts the energy…at this point the acetyl group has been split!! 4.The C4 molecules is rearranged, regenerating the oxaloacetate; releasing energy that is stored in ATP, FADH, and NADH.

b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP 1.C 2 (acetyl) binds to C 4 (oxaloacetate), making a C 6 molecule (citrate) 2.One C is broken off (CO 2 ) and NAD accepts energy (NADH) 3.The second C is broken off (CO 2 ) and NAD accepts the energy…at this point the acetyl group has been split!! 4.The C4 molecules is rearranged, regenerating the oxaloacetate; releasing energy that is stored in ATP, FADH, and NADH. 5.In summary, the C 2 acetyl is split and the energy released is trapped in ATP, FADH, and 3 NADH. (this occurs for EACH of the 2 pyruvates from the initial glucose).

III. Cellular Respiration Overview: 1.Glycolysis 2.Anaerobic Respiration 3.Aerobic Respiration a - Glycolysis: C 6 (glucose) 2C 3 (pyruvate) + ATP, NADH b - Gateway step: 2C 3 2C 2 (acetyl) + 2C (CO 2 ) + NADH c - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP d - Electron Transport Chain: convert energy in NADH, FADH to ATP

d - Electron Transport Chain: transfer energy in NADH, FADH to ATP

LE 9-13 ATP Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle NADH 50 FADH 2 40 FMN FeS I FAD FeS II III Q FeS Cyt b Cyt c Cyt c 1 Cyt a Cyt a 3 IV 10 0 Multiprotein complexes Free energy (G) relative to O2 (kcal/mol) H2OH2O O2O2 2 H / 2 electron ADP + P ATP RELEASES ENERGY STORES ENERGY

LE 9-13 ATP Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle NADH 50 FADH 2 40 FMN FeS I FAD FeS II III Q FeS Cyt b Cyt c Cyt c 1 Cyt a Cyt a 3 IV 10 0 Multiprotein complexes Free energy (G) relative to O2 (kcal/mol) H2OH2O O2O2 2 H / 2 electron ADP + P ATP RELEASES ENERGY STORES ENERGY HEY!!! Here’s the first time O 2 shows up!!! It is the final electron acceptor, and water is produced as a waste product!

LE 9-15 Protein complex of electron carriers H+H+ ATP Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle H+H+ Q III I II FAD FADH 2 + H + NADH NAD + (carrying electrons from food) Inner mitochondrial membrane Inner mitochondrial membrane Mitochondrial matrix Intermembrane space H+H+ H+H+ Cyt c IV 2H / 2 O 2 H2OH2O ADP + H+H+ ATP synthase Electron transport chain Electron transport and pumping of protons (H + ), Which create an H + gradient across the membrane P i Chemiosmosis ATP synthesis powered by the flow of H + back across the membrane Oxidative phosphorylation ETC: energy and electrons from NADH and FADH are used to pump H+ against gradient to inner membrane space…potential E.

LE 9-15 Protein complex of electron carriers H+H+ ATP Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle H+H+ Q III I II FAD FADH 2 + H + NADH NAD + (carrying electrons from food) Inner mitochondrial membrane Inner mitochondrial membrane Mitochondrial matrix Intermembrane space H+H+ H+H+ Cyt c IV 2H / 2 O 2 H2OH2O ADP + H+H+ ATP synthase Electron transport chain Electron transport and pumping of protons (H + ), Which create an H + gradient across the membrane P i Chemiosmosis ATP synthesis powered by the flow of H + back across the membrane Oxidative phosphorylation ETC: energy and electrons from NADH and FADH are used to pump H+ against gradient to inner membrane space…potential E. Chemiosmosis: E in flow of H+ used to make bond in ATP.

III. Cellular Respiration Overview: 1.Glycolysis 2.Anaerobic Respiration 3.Aerobic Respiration d - Electron Transport Chain: convert energy in NADH, FADH to ATP - OXYGEN is just an electron ACCEPTOR - WATER is produced as a metabolic waste - All carbons in glucose have been separated - Energy has been harvested and stored in bonds in ATP

If O 2 is NOT present, the ETC backs up and NADH and FADH can’t give up their electrons and H+ to the ETC

What happens then????

If O 2 is NOT present, the ETC backs up and NADH and FADH can’t give up their electrons and H+ to the ETC NADH is recycled through FERMENTATION to NAD so at least GLYCOLYSIS can continue!!

FOODCO2, water, and waste ADP + PATP ANABOLISM WORK

Phosphorylation of myosin causes it to toggle and bond to actin; release of phosphate causes it to return to low energy state and pull actin…contraction.

FOODCO2, water, and waste ADP + PATP ANABOLISM WORK