An Improved CP-FTMW Analysis of the Structures of Phenol Dimer and Trimer Nathan A. Seifert, Cristobal Perez, Amanda L. Steber, Daniel P. Zaleski, Justin.

Slides:



Advertisements
Similar presentations
68th OSU International Symposium on Molecular Spectroscopy TH08
Advertisements

Complementary Use of Modern Spectroscopy and Theory in the Study of Rovibrational Levels of BF 3 Robynne Kirkpatrick a, Tony Masiello b, Alfons Weber c,
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
IDENTIFICATION OF THE CAGE, PRISM, AND BOOK ISOMERS OF WATER HEXAMER AND THE PREDICTED LOWEST ENERGY HEPTAMER AND NONAMER CLUSTERS BY BROADBAND ROTATIONAL.
Substitution Structures of Multiple Silicon-Containing Species by Chirped Pulse FTMW Spectroscopy Nathan A. Seifert, Simon Lobsiger, Brooks H. Pate University.
5/23/2015 International Symposium on Molecular Spectroscopy : 65th Meeting 1 DOUBLY HYDROGEN BONDED BIS-(4-HYDROXYPHENYL)METHANE DIMERS. Chirantha P. Rodrigo,
Infrared spectra of OCS-C 6 H 6, OCS-C 6 H 6 -He and OCS-C 6 H 6 -Ne van der Waals Complexes M. Dehghany, J. Norooz Oliaee, Mahin Afshari, N. Moazzen-Ahmadi.
Chirped-Pulse Broadband Microwave Spectra and Structures of the OCS Trimer and Tetramer Luca Evangelisti, Cristobal Perez, Nathan A. Seifert, Brooks H.
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
Pure Rotational and Ultraviolet-Microwave Double Resonance Spectroscopy of Two Water Complexes of para-methoxyphenylethylamine (pMPEA) Justin L. Neill,
Aloke Das Indian Institute of Science Education and Research, Pune Mimicking trimeric interactions in the aromatic side chains of the proteins: A gas phase.
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
Water clusters observed by chirped-pulse rotational spectroscopy: Structures and hydrogen bonding Cristobal Perez, Matt T. Muckle, Daniel P. Zaleski, Nathan.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
Structures of the cage, prism and book hexamer water clusters from multiple isotopic substitution Simon Lobsiger, Cristobal Perez, Daniel P. Zaleski, Nathan.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
ROTATIONALLY RESOLVED ELECTRONIC SPECTRA OF SECONDARY ALKOXY RADICALS 06/22/10 JINJUN LIU AND TERRY A. MILLER Laser Spectroscopy Facility Department of.
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Deuterated water hexamer observed by chirped-pulse rotational spectroscopy International Symposium on Molecular Spectroscopy, 69 th Meeting Champaign-Urbana,
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
An Improved Analysis of the Sevoflurane ⋯ Benzene Structure by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin L. Neill,
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
Broadband Microwave Spectroscopy and Automated Analysis of 12 Conformers of 1-Hexanal Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin L.
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
Hydrogen-bond between the oppositely charged hydrogen atoms It was suggested by crystal structure analysis. A small number of spectroscopic studies have.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
Structural studies of CH 3 SiF 2 -X (X = NCO, Cl) by microwave spectroscopy Gamil A. Guirgis, Jason S. Overby College of Charleston Nathan A. Seifert,
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
Structure of the SEVOFLURANE-BENZENE complex as determined by CP-FTMW spectroscopy Nathan A. Seifert, Daniel P. Zaleski, Justin L. Neill, Brooks H. Pate.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Juliane Heitkämper, John C Mullaney, Nick Walker
Substitution Structures of Large Molecules and Medium Range Correlations in Quantum Chemistry Calculations Luca Evangelisti Dipartmento di Chimica “Giacomo.
OCS trimer and tetramer: Calculated structures and infrared spectra
MARIYAM FATIMA 1,2,3, CRISTÓBAL PÉREZ1,2,3 , MELANIE SCHNELL 1,2,3
The CP-FTMW Spectrum of Verbenone
Chirped pulse rotational spectroscopy
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
Broadband Microwave Spectrum & Structure of Cyclopropyl Cyanosilane
Department of Chemistry
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

An Improved CP-FTMW Analysis of the Structures of Phenol Dimer and Trimer Nathan A. Seifert, Cristobal Perez, Amanda L. Steber, Daniel P. Zaleski, Justin L. Neill, Brooks H. Pate University of Virginia Alberto Lesarri Universidad de Valladolid

Previous Experimental Structural Studies: CP-FTMW; previously by us: RC11, 2011 (Steber et al.) 1 Substitution structure assigned, issues with Kraitchman agreement Less assigned transitions  poorer determination of constants, distortion  poorer structure Rotational coherence spectroscopy 2 and UV-Vis 3 ; Some issues with these results: O ⋯ O lengths not determined (RCS) or anomalously long (UV-Vis ), ≥3 Å Poor precision with respect to FTMW Phenol trimer detected using UV/IR double resonance, but no structural information 4 IR data consistent with symmetric “barrel” structure 1.A. L. Steber, et al. Faraday Discuss., 2011, 150, M. Schmitt, et al., ChemPhysChem, 2006, 7, A. Weichert, et al., J. Phys. Chem. A, 2001, 105, T. Ebata, et al. J. Phys. Chem., 1995, 99, Inter-ring dispersion motif: π stacking-like, or C-H ⋯ π dominated? Unsolved Mysteries of (phenol) 2 : (H2O) 2 : r[O ⋯ O] is 2.98 Å; is hydrogen bonding a major player in (phenol) 2 ? Necessitated reduced bandwidth measurement to assign isotopologues in natural abundance On a side note: Introduction - Experiment UV/Vis r 0 structure M06-2X/ g(d,p)

Introduction - Theory (phenol) 2 : Important benchmark molecule for modeling the interplay of various non-covalent interactions ---- H-bonding: Electrostatic dominated π-π: Dispersion (exchange) dominated CH-π: dispersion/ electrostatic competition Important to fine tune the computational balance between electrostatics and exchange for biochemical or (in this case) spectroscopic predictions

Experimental New horns enable use of 5 pulsed nozzles at 2-8 GHz (previous setup was 2 nozzles) New TWT with 600W peak output (previous was 200W) New oscilloscope (Tek DPO73304D) enables detection of 8 frames at 3.3 Hz! (previous 2-8GHz rate was ~0.5Hz, at 4 frames/acq!) 9.2 million averages, 2-8 GHz Dynamic range: 30000: lines over 4:1 SNR See Cristobal’s talk, TH10, for more information on the instrument At 3.3 Hz, this is about 4 days of averaging!

V(θ) = (0.232 cm -1 )θ 2 - ( cm -1 )θ 3 Δ = ±4° (1σ) MO6-2X/ g(d,p) scan of the hinge potential Calculating ψ with this potential gives a QM hinge fluctuation of Ab initio PES fits with R 2 = 0.99 to: Fundamental mode is 28 cm -1 by these calculations; experimentally 1 it’s 9 cm -1 Smaller than the σ seen in the theoretical results (next slide)! Phenol Dimer - Analysis Question: Will this be a problem for our determined structure? “Hinge potential” – anharmonic and large amplitude? 1. M. Schmitt, et al. J. Chem. Phys., 1995, 103, 9918.

Answer: Yes and no. Experimental determination is quite acceptable, but there are issues with theory. Phenol Dimer - Analysis A (MHz)B (MHz)C (MHz)Hinge Angle MP2/6-311g(d,p) MP2/ g(d,p) MP2/cc-pVTZ-cp a CCSD/6-311g(d,p) CCSD/ g(d,p) M06-2X/6-311g(d,p) M06-2X/ g(d,p) M06-2X/ g(df,pd) B3LYP/6-31G(d,p) B3LYP/ g(d,p) RI-DFT-D/aQz' b CP-FTMW (r 0, this study) (11) (32) (30)62.3(14) UV-VIS (r 0, Schmitt et al.) (39)313.51(1)288.11(1)63.0 Observations: MP2/CCSD overestimates the dispersive contributions (a known problem) B3LYP fails completely Dispersion-corrected hybrid functionals such as M06-2X (Truhlar) and RI-DFT-D (Hobza) perform the best a. P. Jurečka, J. Šponer, J. Černy and P. Hobza, Phys. Chem. Chem. Phys. 2006, 8, b. M. Koláŕ and P. Hobza, J. Phys. Chem. A, 2007, 111, A bold claim: On the basis of efficient spectroscopic discovery, new hybrid functionals might be the future.

Phenol Dimer - Structure Six parameters required to fit intermolecular structure: 1)R[1d ⋯ 1a] (hydrogen bond length) 2)θ[1d ⋯ 1a-2a] & θ[1a ⋯ 1d-2d] (planarity of H-bond) 3)φ[1a ⋯ 1d-2d-3d] & φ[1d ⋯ 1a-2a-3a] (“ring tilt”) 4)φ[2d-1d ⋯ 1a-2a] (hinge angle) Fix phenol monomer geometry to ab initio geometry (excellent agreement with previous expt. results) Schema (also used in UV/Vis study): r 0 intermolecular fit structure: Our “toolkit”: All 13 C and both 18 O isotopologues in natural abundance 10 3 better certainty on parent species constants (plus distortion!) UV/Vis “toolkit”: C 6 H 5 -OD measurements 13 C at the 1- position Just A/B/C on parent species with ~ kHz precision

M06-2x/ g(d,p) [frame] r 0 [spheres] Phenol Dimer - Structure M06-2x/ g(d,p) [frame] r s [spheres]

ParameterValue (r 0 fit, this study) Value (r 0 fit, UV/VIS 1 ) M06-2X/ g(d,p) r(H d ⋯ O a ) 1.873(22)2.354(49)1.890 r(O d ⋯ O a ) 2.833(21)3.211(25)2.844 θ(O d -H d ⋯ O a ) 170.5(21)150.6(18)168.1 θ(C a -O a ⋯ H d ) 122.5(10)138.6(15)118.8 φ(O a -H a ⋯ O d -C d ) 75.5(59)109.6(45)76.8 φ(C d -O d -H d ⋯ O a ) -27.7(47)-26.5(46)-23.4 φ(C2 a -C a -O a ⋯ H d ) 10.6(17)-1.0(19)14.2 φ(C d -O d ⋯ O a -C a ) [hinge] 64.0(13) CdCd OdOd OaOa CaCa HdHd C2 a Take home points: Water dimer-like hydrogen bonding: (H2O) 2 : r(O ⋯ O) = 2.98(1) Å π stacking dominant, not the “twisted” C-H ⋯ π-like motif seen in UV-VIS structure Phenol Dimer - Structure Brown: UV-Vis r 0 Purple: CP-FTMW r 0 1. M. Schmitt, M. Böhm, C. Ratzer, D. Krügler, K. Kleinermanns, I. Kalkman, G. Berden and W. L. Meerts, ChemPhysChem, 2006, 7, (donor rings overlapping) CP-FTMW r 0 σ fit = amu Å 2

Phenol Trimer Oblate symmetric top Parent1- 13 C6- 13 C2- 13 C5- 13 C3- 13 C4- 13 C A(MHz) (14) (17) (23) (52) (31) (66) B (MHz) (56) (14) (17) (23) (53) (30) (65) C (MHz) (14) (50)187.36(21) (44)187.34(14) (66) D J (kHz) (19)[0.0315] (10)[0.0315]0.0334(12) D JK (28)[0.0752] (26)[0.0752]0.0725(34) DKDK --[0] dJdJ --[ ] (56)[ ] (65) dKdK --[0] N σ (kHz) C isotopologues are off-symmetry axis, so they are standard oblate asymmetric tops To ease the fitting process, isotopologues were fit as pure c-type prolate asymmetric tops 1. T. Ebata, T. Watanabe, N. Mikami. J. Phys. Chem. 1995, 99, Nature of Kraitchman substitution for this system requires some assumptions regarding C-C bond lengths in the phenol monomers (ask me about it after if you’re curious)

Use of dummy coordinates and forced C 3v symmetry: Only three fit parameters: r, θ, φ (w/ three-fold degeneracy) Schema: Phenol Trimer - Structure Use r m (1) model to fit intermolecular structure Assume phenol monomer ab initio structure Similar assumptions to r s determination (thanks to Z. Kisiel for the helpful tips!)

ParameterM06-2X/ g(d,p)r m (1) r(H ⋯ O) / Å (86) r(O ⋯ O) (70) r(C1 - C1') (83) <(O - O' - O'') / ° (73) <(O - H ⋯ O') (16) <(C1 - O'' ⋯ O') (14) <(C1'' - O'' ⋯ O) (16) <(C1 ⋯ C1' ⋯ C1'') (75) t(C1-O-O'-C1') (28) t(O-O'-C1'-C6') (33) c aa = c bb / amu Å (85) r(O ⋯ O) shorter for phenol trimer than dimer 2.833(21) Å  2.760(70) Å Similar trend to (H2O) 2  (H2O) Å  2.85 Å Stabilizing multi-body effects are apparent: “hinge” is closed: C-H/π interactions much more important 2- hydrogen with C5-C6 bond: ~2.6 Å (very typical for C-H/π) Ring planes are nearly perpendicular  85.2(33)° Phenol Trimer - Structure Theory is much more well behaved! A (MHz)B (MHz)C (MHz) M06-2X/6-311g(d,p) M06-2X/ g(d,p) MP2/6-311g(d,p) MP2/ g(d,p) B3LYP/ g(d,p) Experiment[188] (56)

Acknowledgements Thanks to the NSF for funding: MRI-R2, Award CHE Pate Group Brooks Pate Cristobal Perez Simon Lobsiger Luca Evangelisti Brent Harris Amanda Steber Nathan Seifert Daniel Zaleski Newcastle University Brightspec Justin Neill Universidad de Valladolid Alberto Lesarri Thanks for your time!

Phenol Trimer - Structure Off-axis substitution has easy form of Kraitchman’s equations: Problem: In the above frame, |a| = 0. In PA frame, |a| ≠ 0. How do we determine rotation matrix to get PA coordinates? Solution: Assume ab-initio phenol monomer C-C bond lengths to solve Law of Cosines for required θ to convert KRA->PA (oblate basis )

Phenol Dimer Detected all C and both 18 O isotopologues M06-2X/ g(d,p) CP-FTMW (2-8 GHz, new) CP-FTMW (7-9 GHz, old) A (MHz) (14) (48) B (41) (60) C (38) (66) Δ J (kHz) (76) (65) Δ JK (48) (96) ΔKΔK (27) (16) δJδJ (17) (29) δKδK (19) (85) N σ (kHz) Donor A (MHz) BC Nσ (kHz) C (14) (32) (32) C (48) (19) (20) C (63) (35) (34) C (10) (28) (28) C (97) (26) (28) C (88) (29) (29) O (25) (80) (76) Acceptor C (69) (16) (16) C (35) (22) (22) C (82) (22) (23) C (96) (19) (19) C (74) (26) (26) C (64) (17) (18) O (42) (67) (65)697.02