Andy Moore, UCSC Hernan Arango, Rutgers Gregoire Broquet, CNRS Chris Edwards & Milena Veneziani, UCSC Brian Powell, U Hawaii Jim Doyle, NRL Monterey Dave.

Slides:



Advertisements
Similar presentations
Variational data assimilation and forecast error statistics
Advertisements

Introduction to Data Assimilation NCEO Data-assimilation training days 5-7 July 2010 Peter Jan van Leeuwen Data Assimilation Research Center (DARC) University.
Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.
OSE meeting GODAE, Toulouse 4-5 June 2009 Interest of assimilating future Sea Surface Salinity measurements.
The Inverse Regional Ocean Modeling System:
Forecasting Forecast Error
Characterization of Forecast Error using Singular Value Decomposition Andy Moore and Kevin Smith University of California Santa Cruz Hernan Arango Rutgers.
Assessing the Information Content and Impact of Observations on Ocean Circulation Estimates using 4D-Var Andy Moore Dept. of Ocean Sciences UC Santa Cruz.
ROMS 4D-Var: Past, Present & Future Andy Moore UC Santa Cruz.
ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms COAWST Modeling System Training WHOI, Woods Hole, MA August 26, 2014 Hernan G. Arango.
Initialization Issues of Coupled Ocean-atmosphere Prediction System Climate and Environment System Research Center Seoul National University, Korea In-Sik.
Rutgers Ocean Modeling Group ROMS 4DVar data assimilation Mid-Atlantic Bight and Gulf of Maine John Wilkin with Julia Levin, Javier Zavala-Garay, Hernan.
Building Bluelink David Griffin, Peter Oke, Andreas Schiller et al. March 2007 CSIRO Marine and Atmospheric Research.
Prediction of Ocean Circulation in the Gulf of Mexico and Caribbean Sea An application of the ROMS/TOMS Data Assimilation Models Hernan G. Arango (IMCS,
Jidong Gao and David Stensrud Some OSSEs on Assimilation of Radar Data with a Hybrid 3DVAR/EnKF Method.
Data assimilation schemes in numerical weather forecasting and their link with ensemble forecasting Gérald Desroziers Météo-France, Toulouse, France.
Application of Satellite Data in the Data Assimilation Experiments off Oregon Peng Yu in collaboration with Alexander Kurapov, Gary Egbert, John S. Allen,
ROMS/TOMS Tangent Linear and Adjoint Models Andrew Moore, CU Hernan Arango, Rutgers U Arthur Miller, Bruce Cornuelle, Emanuele Di Lorenzo, Doug Neilson.
1/20 Accelerating minimizations in ensemble variational assimilation G. Desroziers, L. Berre Météo-France/CNRS (CNRM/GAME)
The ROMS TL and ADJ Models: Tools for Generalized Stability Analysis and Data Assimilation Hernan Arango, Rutgers U Emanuele Di Lorenzo, GIT Arthur Miller,
October, Scripps Institution of Oceanography An Alternative Method to Building Adjoints Julia Levin Rutgers University Andrew Bennett “Inverse Modeling.
1 COAS-CIOSS Coastal Ocean Modeling Activities Coastal Ocean Modeling Studies at COAS are focused on:  Wind-driven upwelling and downwelling [Allen et.
MARCOOS/ESPreSSO ROMS RU Coastal Ocean Modeling and Prediction group John Wilkin, Gordon Zhang, Julia Levin, Naomi Fleming, Javier Zavala-Garay, Hernan.
Advanced data assimilation methods with evolving forecast error covariance Four-dimensional variational analysis (4D-Var) Shu-Chih Yang (with EK)
Variational Data Assimilation in Coastal Ocean Problems with Instabilities Alexander Kurapov J. S. Allen, G. D. Egbert, R. N. Miller College of Oceanic.
An Adjoint Sensitivity Analysis of the Southern California Current Circulation and Ecosystem Andy Moore, Emanuele DiLorenzo, Hernan Arango, Craig Lewis,
Bill Campbell and Liz Satterfield Naval Research Laboratory, Monterey CA Presented at the AMS Annual Meeting 4-8 January 2015 Phoenix, AZ Accounting for.
Coastal Ocean Observation Lab John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean.
Exploring strategies for coupled 4D-Var data assimilation using an idealised atmosphere-ocean model Polly Smith, Alison Fowler & Amos Lawless School of.
ROMS/TOMS TL and ADJ Models: Tools for Generalized Stability Analysis and Data Assimilation Andrew Moore, CU Hernan Arango, Rutgers U Arthur Miller, Bruce.
The Inverse Regional Ocean Modeling System: Development and Application to Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E., Moore, A., H.
NOPP Project: Boundary conditions, data assimilation, and predictability in coastal ocean models OSU: R. M. Samelson (lead PI), J. S. Allen, G. D. Egbert,
Modeling study of the coastal upwelling system of the Monterey Bay area during 1999 and I. Shulman (1), J.D. Paduan (2), L. K. Rosenfeld (2), S.
“ New Ocean Circulation Patterns from Combined Drifter and Satellite Data ” Peter Niiler Scripps Institution of Oceanography with original material from.
3D/4D-Var Methods Liang Xu (NRL) JCSDA Summer Colloquium on Satellite DA 1 3D-Var/4D-Var Solution Methods Liang Xu Naval Research Laboratory, Monterey,
ROMS User Workshop, Rovinj, Croatia May 2014 Coastal Mean Dynamic Topography Computed Using.
Bruce Cornuelle and Ibrahim Hoteit, SIO/UCSD and Detlef Stammer, Armin Koehl, U. Hamburg Patrick Heimback, MIT Circulation in the Southwest Tropical Pacific.
Ocean Data Variational Assimilation with OPA: Ongoing developments with OPAVAR and implementation plan for NEMOVAR Sophie RICCI, Anthony Weaver, Nicolas.
Weak and Strong Constraint 4DVAR in the R egional O cean M odeling S ystem ( ROMS ): Development and Applications Di Lorenzo, E. Georgia Institute of Technology.
In collaboration with: J. S. Allen, G. D. Egbert, R. N. Miller and COAST investigators P. M. Kosro, M. D. Levine, T. Boyd, J. A. Barth, J. Moum, et al.
1 Advantages of data assimilation in coastal ocean circulation models: Oregon perspective Alexander L. Kurapov, J. S. Allen, G. D. Egbert, R. N. Miller.
Dusanka Zupanski And Scott Denning Colorado State University Fort Collins, CO CMDL Workshop on Modeling and Data Analysis of Atmospheric CO.
ROMS 4D-Var: The Complete Story Andy Moore Ocean Sciences Department University of California Santa Cruz & Hernan Arango IMCS, Rutgers University.
The I nverse R egional O cean M odeling S ystem Development and Application to Variational Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E.
INVERSE MODELING OF ATMOSPHERIC COMPOSITION DATA Daniel J. Jacob See my web site under “educational materials” for lectures on inverse modeling atmospheric.
Modeling the biological response to the eddy-resolved circulation in the California Current Arthur J. Miller SIO, La Jolla, CA John R. Moisan NASA.
Data assimilation and forecasting the weather (!) Eugenia Kalnay and many friends University of Maryland.
The OR-WA coastal ocean forecast system Initial hindcast assimilation tests 1 Goals for the COMT project: -DA in presence of the Columbia River -Develop.
ROMS/TOMS European Workshop Alcala de Henares, Spain, November 7, 2006 ROMS Framework and Algorithms Andrew M. Moore UCSC Emanuele Di Lorenzo Georgia Tech.
INVERSE MODELING TECHNIQUES Daniel J. Jacob. GENERAL APPROACH FOR COMPLEX SYSTEM ANALYSIS Construct mathematical “forward” model describing system As.
Weak Constraint 4DVAR in the R egional O cean M odeling S ystem ( ROMS ): Development and application for a baroclinic coastal upwelling system Di Lorenzo,
2005 ROMS/TOMS Workshop Scripps Institution of Oceanography La Jolla, CA, October 25, D Variational Data Assimilation Drivers Hernan G. Arango IMCS,
Predictability of Mesoscale Variability in the East Australian Current given Strong Constraint Data Assimilation John Wilkin Javier Zavala-Garay and Hernan.
Weak and Strong Constraint 4D variational data assimilation: Methods and Applications Di Lorenzo, E. Georgia Institute of Technology Arango, H. Rutgers.
The I nverse R egional O cean M odeling S ystem Development and Application to Variational Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E.
1 A multi-scale three-dimensional variational data assimilation scheme Zhijin Li,, Yi Chao (JPL) James C. McWilliams (UCLA), Kayo Ide (UMD) The 8th International.
Observations and Ocean State Estimation: Impact, Sensitivity and Predictability Andy Moore University of California Santa Cruz Hernan Arango Rutgers University.
G. Panteleev, P.Stabeno, V.Luchin, D.Nechaev,N.Nezlin, M.Ikeda. Estimates of the summer transport of the Kamchatka Current a variational inverse of hydrographic.
Predictability of Mesoscale Variability in the East Australia Current given Strong Constraint Data Assimilation Hernan G. Arango IMCS, Rutgers John L.
Mesoscale Assimilation of Rain-Affected Observations Clark Amerault National Research Council Postdoctoral Associate - Naval Research Laboratory, Monterey,
June 20, 2005Workshop on Chemical data assimilation and data needs Data Assimilation Methods Experience from operational meteorological assimilation John.
IMCS, Rutgers University University California Santa Cruz
Local Ensemble Transform Kalman Filter for ROMS in Indian Ocean
Gleb Panteleev (IARC) Max Yaremchuk, (NRL), Dmitri Nechaev (USM)
Identifying Loci for Ocean Forecast Model Error from
Adjoint Sensitivity Analysis of the California Current Circulation and Ecosystem using the Regional Ocean Modeling System (ROMS) Andy Moore, Emanuele.
Andy Moore1, Hernan Arango2 & Chris Edwards1
Development of an advanced ensemble-based ocean data assimilation approach for ocean and coupled reanalyses Eric de Boisséson, Hao Zuo, Magdalena Balmaseda.
Adjoint Sensitivity Studies on the US East Coast
COAS-CIOSS Coastal Ocean Modeling Activities
Presentation transcript:

Andy Moore, UCSC Hernan Arango, Rutgers Gregoire Broquet, CNRS Chris Edwards & Milena Veneziani, UCSC Brian Powell, U Hawaii Jim Doyle, NRL Monterey Dave Foley, NOAA Pacific Grove A Comprehensive 4D-Var Data Assimilation and Analysis System Applied to the California Current System using ROMS

Acknowledgements Chris Edwards, UCSC Jerome Fiechter, UCSC Gregoire Broquet, UCSC Milena Veneziani, UCSC Javier Zavala, Rutgers Gordon Zhang, Rutgers Julia Levin, Rutgers John Wilkin, Rutgers Brian Powell, U Hawaii Bruce Cornuelle, Scripps Art Miller, Scripps Emanuele Di Lorenzo, Georgia Tech Anthony Weaver, CERFACS Mike Fisher, ECMWF ONR NSF NOPP Dan Costa Patrick Robinson

Adjoint Sensitivity Generalized Stability Analysis 4D-Var Unified ROMS System

Adjoint Sensitivity Generalized Stability Analysis 4D-Var The ROMS Trinity

“Trinity” (The Matrix, 1999)

ROMS Obs y, R f b, B f b b, B b x b, B , Q Posterior 4D-Var Priors & Hypotheses Clipped Analyses Ensemble (SV, SO) Hypothesis Tests Forecast dof Adjoint 4D-Var impact Term balance, eigenmodes Uncertainty Analysis error ROMS 4D-Var Ensemble 4D-Var

ROMS 4D-Var Incremental (linearize about a prior) (Courtier et al, 1994) Primal & dual formulations (Courtier 1997) Primal – Incremental 4-Var (I4D-Var) Dual – PSAS (4D-PSAS) & indirect representer (R4D- Var) (Da Silva et al, 1995; Egbert et al, 1994) Strong and weak (dual only) constraint Preconditioned, Lanczos formulation of conjugate gradient (Lorenc, 2003; Tshimanga et al, 2008; Fisher, 1997) Diffusion operator model for prior covariances (Derber & Bouttier, 1999; Weaver & Courtier, 2001) Multivariate balance for prior covariance (Weaver et al, 2005) Physical and ecosystem components Parallel (MPI)

ROMS Obs y, R f b, B f b b, B b x b, B , Q Posterior 4D-Var I4-Var, R4D-Var, 4D-PSAS ROMS 4D-Var Primal & dual formulations

Data Assimilation b b (t), B b f b (t), B f x b (0), B Model solutions depends on x b (0), f b (t), b b (t), h(t) time x(t) Obs, y Prior Posterior ROMS Prior

Notation & Nomenclature State vector Control vector Observation vector Innovation vector Observation matrix Prior

initial condition increment boundary condition increment forcing increment corrections for model error b b (t), B b f b (t), B f x b (0), B Prior Incremental Formulation & Bayes Theorem Thomas Bayes ( ) Posterior distribution of  z:

initial condition increment boundary condition increment forcing increment corrections for model error b b (t), B b f b (t), B f x b (0), B Prior (background) error covariance Tangent Linear Model sampled at obs points Obs Error Cov. Innovation Prior Incremental Formulation & Bayes Theorem

initial condition increment boundary condition increment forcing increment corrections for model error b b (t), B b f b (t), B f x b (0), B Prior The minimum of J is identified iteratively by searching for ∂J/∂  z=0 Incremental Formulation & Bayes Theorem

The Solution Prior (background) circulation estimate: Observations: Posterior (analysis) circulation estimate: Observation matrix Gain Matrix

z Primal Space y Observation vector z Dual Space Primal vs Dual Formulation Vector of increments

The Priors for ROMS CCS 30km, 10 km & 3 km grids, levels Veneziani et al (2009) Broquet et al (2009) COAMPS forcing ECCO open boundary conditions f b (t), B f b b (t), B b x b (0), B Previous assimilation cycle

Observations (y) CalCOFI & GLOBEC SST & SSH Argo TOPP Elephant Seals Ingleby and Huddleston (2007) Data from Dan Costa

4D-Var Configuration Case studies for a representative case 3-10 March, D-Var applied sequentially, outer-loop, inner-loops 7-14 day assimilation windows Prior D: x L h =50 km, L v =30m,  from clim f L  =300km, L Q =100km,  from COAMPS b L h =100 km, L v =30m,  from clim Super observations formed Obs error R (diagonal): SSH 2 cm SST 0.4 C hydrographic 0.1 C, 0.01psu

Recall the Cost Function The aim of 4D-Var is to find the increments  z corresponding to the minimum variance (maximum likelihood) estimate: initial condition increment boundary condition increment forcing increment corrections for model error The minimum of J is identified iteratively by searching for ∂J/∂  z=0

Primal, strong Dual, strong Dual, weak Jmin 4D-Var Performance 3-10 March, 2003 (10km, 42 levels)

Observations 4D-Var Analysis Posterior Observations 4D-Var Analysis Posterior Observations 4D-Var Analysis Posterior prior Sequential 4D-Var 7-14 days Forecast

I4D-Var (primal) R4D-Var (dual) 4D-PSAS (dual) J initial J final 30km, 1X50, strong Which elements of the control vector exert the largest influence on J?

10km ROMS 30km ROMS I4D-Var, 1 outer, 10 inner Strong constraint R4D-Var, 1 outer, 50 inner Strong constraint Initial log 10 J Final log 10 J

What is most important? i.c. wind stress heat flux freshwater flux open b.c.

ROMS Obs y, R f b, B f b b, B b x b, B , Q Posterior 4D-Var Adjoint 4D-Var observation impact observation sensitivity ROMS 4D-Var

10km ROMS I4D-Var, 1 outer, 10 inner Strong constraint Initial log 10 J Final log 10 J

The California Current

t0t0 t 0 +7t x Analysis Cycle Forecast Cycle Observation Impacts on Forecast Error

Adjoint 4D-Var Observation impacts 7day average transport across 500m isobath upper 14m (Veneziani et al, 2009) 500m Transport Increment = (Posterior-Prior) (Langland & Baker, 2004; Gelaro et al., 2007) initial condition surface forcing boundary conditions Control vector impact Obs impact

rms Analysis Cycle 500m Isobath Transport Offshore Onshore Prior I(x b ) Increment  I = I(x a ) – I(x b )

Analysis Cycle 500m Isobath Transport Satellite SSH Satellite SST T XBT T CTD T Argo T TOPP S CTD S Argo Increment  I = I(x a ) – I(x b )

Correlations Balance Advection Baroclinic waves Barotropic waves Physical processes: Statistics: Average impact of satellite SST

Average impact of satellite SST Advection Horizon Baroclinic Wave Horizon (based on c 1 ~2 ms -1 Chelton et al, 1994) IGW CTW Adjoint CTW (based on v~0.1 ms -1 )

Impact of Argo Salinity Obs

ROMS Obs y, R f b, B f b b, B b x b, B , Q Posterior 4D-Var Adjoint 4D-Var observation impact observation sensitivity ROMS 4D-Var Forecast

10km ROMS I4D-Var, 1 outer, 10 inner Strong constraint R4D-Var, 1 outer, 50 inner Strong constraint Initial log 10 J Final log 10 J

Observations 4D-Var Analysis Posterior Observations 4D-Var Analysis Posterior Observations 4D-Var Analysis Posterior prior Sequential 4D-Var 7-14 days Forecast

t0t0 t 0 +7t x Analysis Cycle Forecast Cycle Overlapping Forecast Cycles Next Analysis Cycle

Forecast Error 14 day forecast of 500m isobath transport at t 0 +14, starting at t 0

t0t0 t 0 +7t x Analysis Cycle Forecast Cycle Overlapping Forecast Cycles Next Analysis Cycle

Forecast Error 14 day forecast of 500m isobath transport at t 0 +14, starting at t 0 7 day forecast of 500m isobath transport at t 0 +14, starting at t 0 +7

t0t0 t 0 +7t x Analysis Cycle Forecast Cycle Overlapping Forecast Cycles Next Analysis Cycle

Forecast Error 14 day forecast of 500m isobath transport at t 0 +14, starting at t 0 7 day forecast of 500m isobath transport at t 0 +14, starting at t 0 +7 Verifying analysis of 500m isobath transport at t 0 +14

t0t0 t 0 +7t x Analysis Cycle Forecast Cycle Overlapping Forecast Cycles Next Analysis Cycle

Forecast Error 14 day forecast of 500m isobath transport at t 0 +14, starting at t 0 7 day forecast of 500m isobath transport at t 0 +14, starting at t 0 +7 Verifying analysis of 500m isobath transport at t day forecast error

t0t0 t 0 +7t x Analysis Cycle Forecast Cycle Overlapping Forecast Cycles Next Analysis Cycle

Forecast Error 14 day forecast of 500m isobath transport at t 0 +14, starting at t 0 7 day forecast of 500m isobath transport at t 0 +14, starting at t 0 +7 Verifying analysis of 500m isobath transport at t day forecast error 7 day forecast error

t0t0 t 0 +7t x Analysis Cycle Forecast Cycle Overlapping Forecast Cycles Next Analysis Cycle

Forecast Error 14 day forecast of 500m isobath transport at t 0 +14, starting at t 0 7 day forecast of 500m isobath transport at t 0 +14, starting at t 0 +7 Verifying analysis of 500m isobath transport at t day forecast error 7 day forecast error Change in e due to assimilation of observations over [t 0 +7,t 0 +14]

Forecast Error 7 day forecast better than 14 day forecast 7 day forecast worse than 14 day forecast

500m Isobath Transport Forecast Error

SST Obs that reduce forecast error SST Obs that increase forecast error RMS Impact of SST Obs on 500m Isobath Transport Forecast Error

ROMS Obs y, R f b, B f b b, B b x b, B , Q Posterior 4D-Var Uncertainty Analysis error ROMS 4D-Var

Expected Posterior Error  b = prior error std  a = posterior error std 3 March, 2003 (10km, 42 levels) Posterior: Posterior covariance: Gain matrix

SSS Zonal wind stress Meridional wind stress Heat Flux

ROMS Obs y, R f b, B f b b, B b x b, B , Q Posterior 4D-Var Priors & Hypotheses Hypothesis Tests ROMS 4D-Var degrees of freedom degrees of reachability array modes

30km Consistency Checks in Obs Space Desroziers et al (2005): Observation matrix

Degrees of Freedom Recall that the optimal increments minimize: No. of dof in obs No. of dof in prior “dof” – degrees of freedom Theoretical min: (Bennett et al, 1993; Cardinali et al, 2004; Desroziers et al., 2009)

Assimilation cycle ( ) Log10(J) dof of obs (30km, 30 level, dual, strong, sequential, 7 day, 200 inner-loops) Less than 10% of all observations provide independent info LOTS OF REDUNDANCY! J b >(J b ) min and indicates over fitting to the obs J≠J min and indicates that prior hypotheses are incorrect

Adjoint Sensitivity Generalized Stability Analysis 4D-Var The ROMS Trinity

Summary and Conclusions

Assimilation impacts on CC No assim Strong Constraint 4D-Var Time mean alongshore flow (37N) (10km, 42 lev) Broquet et al (2009)

Time series of  a -  b (Sv) rms

Correlations Balance Advection Baroclinic waves Barotropic waves Physical processes: Statistics: Average impact of satellite SST (Sv)

Average impact of satellite SST Advection Horizon Baroclinic Wave Horizon (based on c 1 ~2 ms -1 Chelton et al, 1994) IGW CTW Adjoint CTW (Sv)

Average impact CalCOFI & GLOBEC Salinity Obs Advection Horizon Baroclinic Wave Horizon (Sv)