BLACK HOLE MATHEMATICAL THEORY – DUBNA 17 DECEMBER 2011 NEAR HORIZON PARTICLE DYNAMICS IN EXTREMAL KERR BLACK HOLE S. BELLUCCI INFN-LABORATORI NAZIONALI.

Slides:



Advertisements
Similar presentations
Summing planar diagrams
Advertisements

FIRST ORDER FORMALISM FOR NON-SUPERSYMMETRIC MULTI BLACK HOLE CONFIGURATIONS A.Shcherbakov LNF INFN Frascati (Italy) in collaboration with A.Yeranyan Supersymmetry.
Hot topics in Modern Cosmology Cargèse - 10 Mai 2011.
The formulation of General Relativity in extended phase space as a way to its quantization T. P. Shestakova Department of Theoretical and Computational.
On Interactions in Higher Spin Gauge Field Theory Karapet Mkrtchyan Supersymmetries and Quantum Symmetries July 18-23, 2011 Dubna Based on work in collaboration.
Chanyong Park 35 th Johns Hopkins Workshop ( Budapest, June 2011 ) Based on Phys. Rev. D 83, (2011) arXiv : arXiv :
Dynamic Wormhole Spacetimes Coupled to Nonlinear Electrodynamics Aarón V. B. Arellano Facultad de Ciencias, Universidad Autónoma del Estado de México,
On Kerr Newman/CFTs Dualities 孫佳叡 Jia-Rui Sun National Central University National Center for Theoretical Sciences, September 14, 2010 Based on arxiv:
The RN/CFT Correspondence 孫佳叡 Jia-Rui Sun National Central University based on arXiv: (JHEP 1001:057, 2010), C.-M. Chen, JRS and S.-J. Zou; arXiv: ,
Tomographic approach to Quantum Cosmology Cosimo Stornaiolo INFN – Sezione di Napoli Fourth Meeting on Constrained Dynamics and Quantum Gravity Cala Gonone.
The attractor mechanism, C-functions and aspects of holography in Lovelock gravity Mohamed M. Anber November HET bag-lunch.
Gerard ’t Hooft Spinoza Institute Utrecht University CMI, Chennai, 20 November 2009 arXiv:
Microscopic entropy of the three-dimensional rotating black hole of BHT massive gravity of BHT massive gravity Ricardo Troncoso Ricardo Troncoso In collaboration.
Supersymmetry and Gauge Symmetry Breaking from Intersecting Branes A. Giveon, D.K. hep-th/
Entanglement in Quantum Critical Phenomena, Holography and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research Dubna, RUSSIA Banff, July 31,
Completeness of the Coulomb eigenfunctions Myles Akin Cyclotron Institute, Texas A&M University, College Station, Texas University of Georgia, Athens,
On the effects of relaxing On the effects of relaxing the asymptotics of gravity in three dimensions in three dimensions Ricardo Troncoso Centro de Estudios.
The 2d gravity coupled to a dilaton field with the action This action ( CGHS ) arises in a low-energy asymptotic of string theory models and in certain.
Black Hole Decay in the Kerr/CFT Correspondence TH, Guica, Song, and Strominger and work in progress with Song and Strominger ESI Workshop on.
Field Theory: The Past 25 Years Nathan Seiberg (IAS) The Future of Physics October, 2004 A celebration of 25 Years of.
States, operators and matrices Starting with the most basic form of the Schrödinger equation, and the wave function (  ): The state of a quantum mechanical.
Conformal higher-spin fields in (super) hyperspace Dmitri Sorokin INFN, Padova Section Based on arXiv: , with Ioannis Florakis (CERN)
Kirill Polovnikov* Anton Galajinsky* Olaf Lechtenfeld** Sergey Krivonos*** * Laboratory of Mathematical Physics, Tomsk Polytechnic University ** Institut.
GENERAL PRINCIPLES OF BRANE KINEMATICS AND DYNAMICS Introduction Strings, branes, geometric principle, background independence Brane space M (brane kinematics)
9 March Chung Yuan Christian University Chiang-Mei Chen Department of Physics, National Central University.
Conformally flat spacetimes and Weyl frames Carlos Romero Cargèse - 11 Mai 2010.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
An introduction to the Gravity/Fluid correspondence and its applications Ya-Peng Hu College of Science, Nanjing University of Aeronautics and Astronautics,
The motion of the classical and quntum partcles in the extended Lobachevsky space Yu. Kurochkin, V.S. Otchik, E. Ovseyuk, Dz. Shoukovy.
Ch 9 pages Lecture 23 – The Hydrogen Atom.
String solitons in the M5-brane worldvolume with a Nambu-Poisson structure and Seiberg-Witten map Tomohisa Takimi (NTU) Ref ) Kazuyuki Furuuchi, T.T JHEP08(2009)050.
Black Holes, Entropy, and Information Gary Horowitz UCSB.
S. Bellucci a S. Krivonos b A.Shcherbakov a A.Sutulin b a Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Italy b Bogoliubov Laboratory.
L.I. Petrova “Specific features of differential equations of mathematical physics.” Investigation of the equations of mathematical physics with the help.
Shear viscosity of a highly excited string and black hole membrane paradigm Yuya Sasai Helsinki Institute of Physics and Department of Physics University.
The false vacuum bubble, the true vacuum bubble, and the instanton solution in curved space 1/23 APCTP 2010 YongPyong : Astro-Particle and Conformal Topical.
On the exotic BTZ black holes Baocheng Zhang Based on papers PRL 110, ; PRD 88, Coauthor : P. K. Townsend KITPC,
On integrability of spinning particle motion in higher-dimensional rotating black hole spacetimes David Kubizňák (Perimeter Institute) Relativity and Gravitation.
Physical Foundations of Natural Science Vasily Beskin # 2-4.
Finite N Index and Angular Momentum Bound from Gravity “KEK Theory Workshop 2007” Yu Nakayama, 13 th. Mar (University of Tokyo) Based on hep-th/
Uniform discretizations: the continuum limit of consistent discretizations Jorge Pullin Horace Hearne Institute for Theoretical Physics Louisiana State.
Super Virasoro Algebras from Chiral Supergravity Ibaraki Univ. Yoshifumi Hyakutake Based on arXiv:1211xxxx + work in progress.
Emanuele Berti Aristotle University of Thessaloniki In collaboration with: Kostas Kokkotas, Vitor Cardoso, Hisashi Onozawa Suggested.
On Fuzzball conjecture Seiji Terashima (YITP, Kyoto) based on the work (PRD (2008), arXiv: ) in collaboration with Noriaki Ogawa (YITP)
Exact Foldy-Wouthuysen transformation for gravitational waves and magnetic field background Bruno Gonçalves UNIVERSIDADE FEDERAL DE JUIZ DE FORA DEPARTAMENTO.
Quantum Gravity at a Lifshitz Point Ref. P. Horava, arXiv: [hep-th] ( c.f. arXiv: [hep-th] ) June 8 th Journal Club Presented.
Black holes sourced by a massless scalar KSM2105, FRANKFURT July, 21th 2015 M. Cadoni, University of Cagliari We construct asymptotically flat black hole.
Quantum cosmology with nontrivial topologies T. Vargas Center for Mathematics and Theoretical Physics National Central University.
Department of Physics, National University of Singapore
Comments on entanglement entropy in the dS/CFT correspondence Yoshiki Sato ( Kyoto U. ) PRD 91 (2015) 8, [arXiv: ] 9th July.
2 Time Physics and Field theory
Infinite dimensional symmetries in the AdS/CFT correspondence Io Kawaguchi Particle Physics Group, Department of Physics, Kyoto University GCOE Symposium.
Emergent IR Dual 2d CFTs in Charged AdS 5 Black Holes Maria Johnstone (University of Edinburgh) Korea Institute for Advanced Study (KIAS) 20 th February.
Entanglement in Quantum Gravity and Space-Time Topology
Non-Commutative Einstein Equations and Seiberg–Witten Map Paolo Aschieri,Elisabetta Di Grezia, Giampiero Esposito, INFN, Turin and Naples. Friedmann Seminar,
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
Gravity effects to the Vacuum Bubbles Based on PRD74, (2006), PRD75, (2007), PRD77, (2008), arXiv: [hep-th] & works in preparation.
Goro Ishiki (University of Tsukuba) arXiv: [hep-th]
On the exotic BTZ black holes Baocheng Zhang Based on papers PRL 110, ; PRD 88, Collaborated with Prof. P. K. Townsend 郑州,
Teruaki Suyama Black hole perturbation in modified gravity Research Center for the Early Universe, University of Tokyo 公募研究 ( 計画研究 A05) 「強い重力場での修正重力理論の検証に向けた理論的研究」
Bum-Hoon Lee Sogang University, Seoul, Korea D-branes in Type IIB Plane Wave Background 15th Mini-Workshop on Particle Physics May 14-15, 2006, Seoul National.
Anisotropic Mechanics J.M. Romero, V. Cuesta, J.A. Garcia, and J. D. Vergara Instituto de Ciencias Nucleares, UNAM, Mexico.
A TEST FOR THE LOCAL INTRINSIC LORENTZ SYMMETRY
Quantum Mechanical Models for Near Extremal Black Holes
Quantum Gravity : from Black Holes to Quantum Entanglement
Lagrange Formalism & Gauge Theories
A rotating hairy BH in AdS_3
Quantum properties of supersymmetric gauge theories
Hysteresis Curves from 11 dimensions
Spin and Quadrupole corrections to IMRIs
Presentation transcript:

BLACK HOLE MATHEMATICAL THEORY – DUBNA 17 DECEMBER 2011 NEAR HORIZON PARTICLE DYNAMICS IN EXTREMAL KERR BLACK HOLE S. BELLUCCI INFN-LABORATORI NAZIONALI DI FRASCATI, ITALY

Introduction and motivation The Kerr solution, describing rotating neutral black holes, plays a fundamental role in General Relativity, as well as in modern theoretical physics in general. Particularly special are its thermodynamic properties and connection to string theory, allowing one to expect that quantum gravity should be closely related to these objects. A very particular case of black hole solution, when the Cauchy and event horizons coincide is called extremal black hole solution. Having much larger symmetry, such solutions play a distinguished role in supergravity (for review, see Riccardo D'Auria, Pietro Fre', [arXiv:hep-th/ v2]). As a first step for the investigation of these objects one can consider a test particle moving in such a field. The investigation of a test particle system is important for many reasons. It may help to reveal some important symmetries or non-trivial constructions related to the field. For example the construction of Killing tensor for Kerr space-time is related to the discovery of a quadratic integral of motion of the massive particle moving in that field (B. Carter, Phys. Rev. 174 (1968) 1559; M. Walker, R. Penrose, Commun. Math. Phys.18 (1970) 265).

Introduction and motivation On the other hand, the direct interpretation of the purely mechanical problem is also motivated, since there are known objects with a set of parameters close to those in extremal Kerr's black hole (Jeffrey E. McClintock, Rebecca Shafee, Ramesh Narayan, Ronald A. Remillard, Shane W. Davis, Li-Xin Li, The Spin of the Near-Extreme Kerr Black Hole GRS , Astrophys.J. 652, ,2006,[arXiv:astro-ph/ ]). In particular, a nearly extremal Kerr BH has been observed in our Galaxy (15/8/1992), with M BH =14M SUN. Its extremality parameter a*=J/GM BH 2 >0.98 (its spin reads J=10 78 hbar). Such a BH has an exact CFT dual M. Guica, T. Hartman, W. Song and A. Strominger, "The Kerr/CFT correspondence,“ Phys. Rev. D 80, (2009) [arXiv: [hep-th]], with a central charge connected to a*.

Introduction and motivation In Anton Galajinsky, Kirill Orekhov,[arXiv: v2], conformal mechanics related to the near horizon extreme Kerr-Newman-AdS-dS black hole is studied. In this talk, we investigate the “spherical'' part of that conformal mechanics, constructing action-angle variables. Such an approach is motivated for several reasons. Except for a very simple form of the solution of motion equations, because of the uniqueness among all other canonic variables, action-angle variables allow us to establish a correspondence/discrepancy between different systems at least on the classical level. On the other hand the quantization in these variables Is very simple. In fact, it is very similar to the Bohr-Sommerfeld quantization.

KERR’S METRICS

EXTREMAL KERR’S BLACK HOLE

CONFORMAL MECHANICS

CONFORMAL ALGEBRA SO(1,2)

ACTION ANGLE VARIABLES

INTEGRATION RANGE

FINAL EXPRESSION FOR ACTION VARIABLES

FINAL EXPRESSION FOR ANGLE VARIABLES

CRITICAL POINT

GRAPHICS

QUANTIZATION

Discussion and Outlook We constructed the action-angle variable of the angular sector of the (near-horizon) dynamics of the particle moving near the horizon of the extreme black hole solution. These variables are expressed via initial ones in terms of elliptic functions, so they are not very convenient for analyzing the system. Nevertheless, they allowed us to indicate the existence of two regimes, with |p Ф | 2mM, separated by the critical point |p Ф | =2mM, where the particle motion becomes effectively 1d. Due to the dynamical conformal symmetry, the presented angular system accumulates the whole information on the initial dynamics of the system. It could be done in terms of the so-called “AdS basis", and in the “conformal" one, where the Hamiltonian takes a form of conventional “non-relativistic" quantum mechanics. Respectively, for negative values of the angular Hamiltonian the effective radial dynamics corresponds to the falling on the center, and for positive values it corresponds to the scattering problem. Hence, the proposed description provides us with the complete semiclassical description of the particle moving near the horizon of an extreme Kerr black hole.

Discussion and Outlook The given formulation allows us to immediately answer the question, whether it is possible to construct the N=4 superconformal extension of the near- horizon Kerr particle.Notice that with the N=4 supersymmetric extension of the angular Hamiltonian I at hand one can easily construct the D(1,2|α) superconformal extension of the whole conformal mechanics. However, one can check that the 2d spherical system does not belong to the family systems admitting N=4 superextensions in terms of existing linear and non-linear supermultiplets. Hence, the common opinion that the near-horizon Kerr particle does not admit a N= 4 superconformal extension is correct. However, we can construct a (formal) N=4 superextension of the system in the action-angle variables. Thus, one can obtain a physically relevant supersymmetric Hamiltonian. The proposed structure is just the analog of the well-known freedom in the the N=2$ supersymmetrization, which was used in past works.

Finally, the action-angle variables define the adiabatic invariants of the system, and yield a ground for the developing of classical perturbation theory. From this viewpoint our consideration is important for describing the dynamics of the particle near non-extreme Kerr black holes, which seemingly have been observed recently. Discussion and Outlook

Acknowledgements ERC Advanced Grant no , “Supersymmetry, Quantum Gravity and Gauge Fields'‘ (SUPERFIELDS), for partial financial support. Armen Nersessian and Vahagn Yeghikyan, for precious collaboration. Pietro Fre and the organizers of ROUND TABLE 4 Black Holes in Mathematics and Physics, for invitation. You all, for kind attention